The Graduate School of Arts and Sciences
2005–2006
Cover: “Hooding and Awards Ceremony” May 14, 2005, from left to right: Terry Dumansky, Steven Hinkson, Michael Parsons, Antoine Hardy, and Jennifer Rainey.

Cover Photograph: Ms. Wanda Duncan, Graduate School of Arts and Sciences.

Wake Forest University is committed to administer all educational and employment activities without discrimination because of race, color, religion, national origin, age, sex, veteran status, or disability status, as required by law. In addition, Wake Forest rejects hatred and bigotry in any form and adheres to the principle that no person affiliated with Wake Forest should be judged or harassed on the basis of perceived or actual sexual orientation. In affirming its commitment to this principle, Wake Forest does not limit freedom of religious association or expression, does not control the policies of persons or entities not affiliated with Wake Forest, and does not extend benefits beyond those provided under other policies of Wake Forest. The University has adopted a procedure for the purpose of resolving discrimination complaints. Inquiries or concerns should be directed to: Reynolda Campus, 336.758.4814; Bowman Gray Campus, 336.716.6123. Individuals with disabilities or special print-related needs may contact the Learning Assistance Center at 336.758.5929 or lacenter@wfu.edu for more information.
2005-06 Academic Calendar: Bowman Gray Campus

Fall Semester 2005

August 2-5 Tuesday-Friday Mandatory new-student orientation/registration
August 8-12 Monday-Friday Ethics Program—new students
August 8-23 Biochemistry Techniques course
August 24 Wednesday Classes begin
September 5 Monday Labor Day holiday
September 7 Wednesday Last day to add courses
September 28 Wednesday Last day to drop courses
October 7 Friday Graduate School Career Day
October 31 Monday Last Day to Submit Thesis to Graduate December 10 (to the Graduate School Office for review)

November 23-27 Wednesday-Sunday Thanksgiving holiday
November 28 Monday Last Day to Defend to Graduate December 10
December 2 Friday Classes end
December 5-9 Monday-Friday Examinations
December 7-9 Wednesday-Friday Registration for Spring ’06/File Intent to Graduate
December 10 Saturday Graduation
December 15 Thursday Grades Due

Spring Semester 2006

January 10 Tuesday Classes begin
January 16 Monday Martin Luther King Jr. holiday
January 25 Wednesday Last day to add courses
January 27 Friday Graduate School Forum
February 15 Wednesday Last day to drop courses
March 6-10 Monday-Friday Spring recess
March 24 Friday Graduate Student Research Day
April 3 Monday Last day to submit thesis to graduate May 15 (to the Graduate School Office for review)

April 14 Friday Good Friday holiday
April 26 Wednesday Classes end
May 1 Monday Last day to defend to graduate May 15
May 4-5 Thursday-Friday Registration for Summer Session 2006
May 1-5 Monday-Friday Examinations
May 12 Friday Grades due
May 13 Saturday Hooding and Awards Ceremony
May 15 Monday Commencement

Summer Session 2006

May 24 Wednesday Summer Session begins
May 31 Wednesday Last day to add/drop courses
June 28 Wednesday Last day to submit thesis to graduate August 11
July 5-7 Wednesday-Friday Registration for returning students/fall ’06
July 26 Wednesday Last day to defend to graduate August 11
August 11 Friday Summer Session ends
August 11 Friday Graduation
August 16 Wednesday Grades due for Summer Session
2005-06 Academic Calendar: Reynolda Campus

Fall Semester 2005

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 22-23</td>
<td>Monday-Tuesday</td>
<td>Registration for all students</td>
</tr>
<tr>
<td>August 23</td>
<td>Tuesday</td>
<td>New Student Orientation</td>
</tr>
<tr>
<td>August 24</td>
<td>Wednesday</td>
<td>Classes begin</td>
</tr>
<tr>
<td>September 7</td>
<td>Wednesday</td>
<td>Last day to add courses</td>
</tr>
<tr>
<td>September 9</td>
<td>Friday</td>
<td>Deadline for filing statement of intent to graduate</td>
</tr>
<tr>
<td>September 28</td>
<td>Wednesday</td>
<td>Last day to drop courses</td>
</tr>
<tr>
<td>October 14</td>
<td>Friday</td>
<td>Fall break</td>
</tr>
<tr>
<td>October 28</td>
<td>Friday</td>
<td>Deadline to submit thesis to the Graduate School office for review of format to graduate</td>
</tr>
<tr>
<td>November 23-27</td>
<td>Wednesday-Sunday</td>
<td>Thanksgiving holiday</td>
</tr>
<tr>
<td>December 2</td>
<td>Friday</td>
<td>Classes end</td>
</tr>
<tr>
<td>December 5-10</td>
<td>Monday-Saturday</td>
<td>Examinations</td>
</tr>
<tr>
<td>December 7</td>
<td>Wednesday</td>
<td>Final copies of thesis due for December graduation</td>
</tr>
<tr>
<td>December 10</td>
<td>Saturday</td>
<td>Graduation</td>
</tr>
</tbody>
</table>

Spring Semester 2006

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>January 9</td>
<td>Monday</td>
<td>Registration for new students</td>
</tr>
<tr>
<td>January 10</td>
<td>Tuesday</td>
<td>Classes begin</td>
</tr>
<tr>
<td>January 16</td>
<td>Monday</td>
<td>Martin Luther King Jr. holiday</td>
</tr>
<tr>
<td>January 25</td>
<td>Wednesday</td>
<td>Last day to add courses</td>
</tr>
<tr>
<td>January 27</td>
<td>Friday</td>
<td>Graduate School Forum</td>
</tr>
<tr>
<td>February 10</td>
<td>Friday</td>
<td>Deadline for filing statement of intent to graduate</td>
</tr>
<tr>
<td>February 15</td>
<td>Wednesday</td>
<td>Last day to drop courses</td>
</tr>
<tr>
<td>March 4-12</td>
<td>Saturday-Sunday</td>
<td>Spring break</td>
</tr>
<tr>
<td>March 24</td>
<td>Friday</td>
<td>Graduate Student Research Day</td>
</tr>
<tr>
<td>April 3</td>
<td>Monday</td>
<td>Deadline to submit thesis to Graduate School office for review of format to graduate</td>
</tr>
<tr>
<td>April 14</td>
<td>Friday</td>
<td>Good Friday holiday</td>
</tr>
<tr>
<td>April 26</td>
<td>Wednesday</td>
<td>Classes end</td>
</tr>
<tr>
<td>April 28-29</td>
<td>Friday-Saturday</td>
<td>Examinations</td>
</tr>
<tr>
<td>May 1-4</td>
<td>Monday-Thursday</td>
<td>Examinations</td>
</tr>
<tr>
<td>May 5</td>
<td>Friday</td>
<td>Final copies of thesis due for May graduation</td>
</tr>
<tr>
<td>May 13</td>
<td>Saturday</td>
<td>Hooding and Awards Ceremony</td>
</tr>
<tr>
<td>May 15</td>
<td>Monday</td>
<td>Commencement</td>
</tr>
</tbody>
</table>

Summer Session 2006

<table>
<thead>
<tr>
<th>Date</th>
<th>Day</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>May 24-June 30</td>
<td></td>
<td>Summer Session I</td>
</tr>
<tr>
<td>July 6-August 11</td>
<td></td>
<td>Summer Session II</td>
</tr>
<tr>
<td>August 11</td>
<td>Wednesday</td>
<td>Graduation</td>
</tr>
</tbody>
</table>
Dear Student:

The Graduate School of Arts and Sciences of Wake Forest University offers courses of study leading to master’s and doctor of philosophy degrees on the Reynolda and Bowman Gray campuses of the University.

Wake Forest University provides graduate students outstanding opportunities for individualized instruction in disciplinary and interdisciplinary study with a nationally and internationally recognized faculty. Excellent facilities and extensive library resources create an intellectually stimulating environment in which to pursue a graduate education.

This bulletin provides an overview of the University and Graduate School. General information and information on each of the graduate programs is provided. If you have questions about the graduate education program, I encourage you to visit our home page at www.wfu.edu/graduate, to contact the Graduate School office on either campus, or the department or program of your interest.

If you are a prospective student, I also invite you to visit our campuses and meet with the faculty, staff, and graduate students of Wake Forest University.

Sincerely,

Gordon A. Melson, PhD
Dean of the Graduate School
Programs of Study

The Graduate School conducts programs on the Bowman Gray Campus (location of the Wake Forest University School of Medicine) and the Reynolda Campus (undergraduate and associated graduate programs). On the Bowman Gray and associated campuses of the medical school, the Graduate School offers PhD programs in biomedical sciences and masters programs in biomedical engineering, comparative medicine, clinical epidemiology and health services research, and molecular medicine. The PhD programs in biology, chemistry, and physics, and masters-only programs in eleven disciplines, ranging from accountancy to religion, are located on the Reynolda Campus. In addition, the masters of arts in liberal studies program enables the college-educated adult student to pursue graduate study in the liberal arts. The Graduate School also offers the combined MD/PhD with the Wake Forest University School of Medicine, the PhD/MBA with the Babcock Graduate School of Management, and an MSA in collaboration with the Wayne Calloway School of Business and Accountancy. Listed on the following pages are the degrees offered.

<table>
<thead>
<tr>
<th>Program</th>
<th>Degrees(s)</th>
<th>Director</th>
<th>E-mail Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accountancy</td>
<td>MSA</td>
<td>Dr. Terry Baker</td>
<td>bakert@wfu.edu</td>
</tr>
<tr>
<td>Biochemistry & Molecular Biology</td>
<td>PhD</td>
<td>Dr. Suzy Torti</td>
<td>storti@wfubmc.edu</td>
</tr>
<tr>
<td>Biology</td>
<td>MS, PhD</td>
<td>Dr. Kathleen Kron</td>
<td>kronka@wfu.edu</td>
</tr>
<tr>
<td>Biomedical Engineering</td>
<td>MS, PhD</td>
<td>Dr. Craig Hamilton</td>
<td>crhamilt@wfubmc.edu</td>
</tr>
<tr>
<td>Cancer Biology</td>
<td>PhD</td>
<td>Dr. Steven Akman</td>
<td>sakman@wfubmc.edu</td>
</tr>
<tr>
<td>Chemistry</td>
<td>MS, PhD</td>
<td>Dr. Bruce King</td>
<td>kingsb@wfu.edu</td>
</tr>
<tr>
<td>Communication</td>
<td>MA</td>
<td>Dr. Ananda Mitra</td>
<td>ananda@wfu.edu</td>
</tr>
<tr>
<td>Comparative Medicine</td>
<td>MS</td>
<td>Dr. Carol Shively</td>
<td>cshively@wfubmc.edu</td>
</tr>
<tr>
<td>Computer Science</td>
<td>MS</td>
<td>Dr. David John</td>
<td>dij@wfu.edu</td>
</tr>
<tr>
<td>Counseling</td>
<td>MA</td>
<td>Dr. Sam Gladding</td>
<td>stg@wfu.edu</td>
</tr>
<tr>
<td>Education</td>
<td>MAEd</td>
<td>Dr. Leah McCoy</td>
<td>mccoy@wfu.edu</td>
</tr>
<tr>
<td>English</td>
<td>MA</td>
<td>Dr. Scott Klein</td>
<td>klein@wfu.edu</td>
</tr>
<tr>
<td>Health & Exercise Science</td>
<td>MS</td>
<td>Dr. Anthony Marsh</td>
<td>marshap@wfu.edu</td>
</tr>
<tr>
<td>Health Sciences Research</td>
<td>MS</td>
<td>Dr. Ronny Bell</td>
<td>rbell@wfubmc.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Michelle Naughton</td>
<td>naughton@wfubmc.edu</td>
</tr>
<tr>
<td>Program</td>
<td>Degrees(s)</td>
<td>Director</td>
<td>E-mail Address</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
<td>--------------------------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>Liberal Studies</td>
<td>MALS</td>
<td>Dr. Cecilia Solano</td>
<td>solano@wfu.edu</td>
</tr>
<tr>
<td>Mathematics</td>
<td>MA</td>
<td>Dr. Edward Allen</td>
<td>allene@wfu.edu</td>
</tr>
<tr>
<td>MD/PhD</td>
<td></td>
<td>Dr. David Bass</td>
<td>dbass@wfubmc.edu</td>
</tr>
<tr>
<td>Microbiology & Immunology</td>
<td>PhD</td>
<td>Dr. Martha Alexander-Miller</td>
<td>marthaam@wfubmc.edu</td>
</tr>
<tr>
<td>Molecular & Cellular Pathobiology</td>
<td>PhD</td>
<td>Dr. John Parks</td>
<td>jpark@wfubmc.edu</td>
</tr>
<tr>
<td>Molecular Genetics</td>
<td>PhD</td>
<td>Dr. Donald Bowden</td>
<td>dbowden@wfubmc.edu</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>MS, PhD</td>
<td>Dr. Kevin High</td>
<td>khigh@wfubmc.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Linda McPhail</td>
<td>lmcphail@wfubmc.edu</td>
</tr>
<tr>
<td>Neurobiology & Anatomy</td>
<td>PhD</td>
<td>Dr. Emilio Salinas</td>
<td>esalinas@wfubmc.edu</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>PhD</td>
<td>Dr. Ronald Oppenheim</td>
<td>ropen@wfubmc.edu</td>
</tr>
<tr>
<td>PhD/MBA</td>
<td></td>
<td>Dr. Dwayne Godwin</td>
<td>dgodwin@wfubmc.edu</td>
</tr>
<tr>
<td>Physics</td>
<td>MS, PhD</td>
<td>Dr. Keith Bonin</td>
<td>bonin@wfu.edu</td>
</tr>
<tr>
<td>Physiology & Pharmacology</td>
<td>PhD</td>
<td>Dr. Sara Jones</td>
<td>srjones@wfubmc.edu</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Jeff Weiner</td>
<td>jweiner@wfubmc.edu</td>
</tr>
<tr>
<td>Psychology</td>
<td>MA</td>
<td>Dr. Dale Dagenbach</td>
<td>dagenbac@wfu.edu</td>
</tr>
<tr>
<td>Religion</td>
<td>MA</td>
<td>Dr. Kenneth Hoglund</td>
<td>hoglund@wfu.edu</td>
</tr>
</tbody>
</table>
Table of Contents

Programs of Study

5

The University

9

- Libraries
- Information Technology
- Academic Computing
- Recognition and Accreditation
- Oak Ridge Associated Universities

The Graduate School

16

- Statement of Purpose
- Statement of Principle on Diversity
- Administration

Procedures

19

- Dates for Applying
- How to Apply
- Financial Assistance
- Admission
- Admission of Students with Disabilities
- Admission Categories
- Classification of Students
- Tuition and Fees
- Housing Services
- Food Services
- Student Health Service, Bowman Gray
- Immunization Policy, Bowman Gray
- Student Health Service, Reynolda
- Immunization Policy, Reynolda
- Vehicle Registration
- University Identification Cards
- Career Services

University Counseling Center
27

Grading
28

Statement on Student Rights and Responsibilities
30

Patents Policy
30

Requirements for Degrees

31

- Foreign Language/Special Skill
- Admission to Candidacy
- Minor Program in Biomedical Sciences
- Master of Arts Degree
- Master of Arts Degree in Counseling
- Master of Arts in Education Degree
- Master of Arts in Liberal Studies Degree
- Master of Science Degree
- Master of Science in Accountancy Degree
- Doctor of Philosophy Degree
- MD/PhD Degree Program
- PhD/MBA degree program

Courses of Instruction

42

- Accountancy
- Biochemistry and Molecular Biology
- Biology
- Biomedical Engineering
- Cancer Biology
- Chemistry
- Communication
- Comparative Medicine
- Computer Science
- Counseling
- Education
Table of Contents

<table>
<thead>
<tr>
<th>Subject</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>English</td>
<td>82</td>
</tr>
<tr>
<td>Health and Exercise Science</td>
<td>89</td>
</tr>
<tr>
<td>Health Science Research</td>
<td>92</td>
</tr>
<tr>
<td>Interdisciplinary Track in Structural and Computational Biophysics</td>
<td>94</td>
</tr>
<tr>
<td>Liberal Studies</td>
<td>97</td>
</tr>
<tr>
<td>Mathematics</td>
<td>98</td>
</tr>
<tr>
<td>Microbiology and Immunology</td>
<td>102</td>
</tr>
<tr>
<td>Molecular and Cellular Pathobiology</td>
<td>104</td>
</tr>
<tr>
<td>Molecular Genetics</td>
<td>106</td>
</tr>
<tr>
<td>Molecular Medicine</td>
<td>108</td>
</tr>
<tr>
<td>Neurobiology and Anatomy</td>
<td>110</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>115</td>
</tr>
<tr>
<td>Physics</td>
<td>118</td>
</tr>
<tr>
<td>Physiology and Pharmacology</td>
<td>122</td>
</tr>
<tr>
<td>Psychology</td>
<td>125</td>
</tr>
<tr>
<td>Religion</td>
<td>129</td>
</tr>
<tr>
<td>Courses in General Studies</td>
<td>135</td>
</tr>
<tr>
<td>Anthropology</td>
<td>136</td>
</tr>
<tr>
<td>Art</td>
<td>139</td>
</tr>
<tr>
<td>Classical Languages</td>
<td>139</td>
</tr>
<tr>
<td>History</td>
<td>139</td>
</tr>
<tr>
<td>Humanities</td>
<td>144</td>
</tr>
<tr>
<td>Philosophy</td>
<td>145</td>
</tr>
<tr>
<td>Political Science</td>
<td>146</td>
</tr>
<tr>
<td>Romance Languages</td>
<td>147</td>
</tr>
<tr>
<td>Sociology</td>
<td>151</td>
</tr>
<tr>
<td>Women’s and Gender Studies</td>
<td>151</td>
</tr>
<tr>
<td>The Board of Trustees</td>
<td>152</td>
</tr>
<tr>
<td>The Board of Visitors</td>
<td>153</td>
</tr>
<tr>
<td>Graduate Faculty Representatives to the University Senate</td>
<td>154</td>
</tr>
<tr>
<td>The Administration</td>
<td>155</td>
</tr>
<tr>
<td>The Graduate Faculty</td>
<td>160</td>
</tr>
<tr>
<td>Index</td>
<td>188</td>
</tr>
<tr>
<td>Contacting the Graduate School</td>
<td>192</td>
</tr>
</tbody>
</table>
Wake Forest University is characterized by its devotion to liberal learning and professional preparation for men and women, its strong sense of community and fellowship, and its encouragement of free inquiry and expression.

Founded in 1834 by the Baptist State Convention of North Carolina, the school opened its doors to students on February 3 as Wake Forest Institute, with Samuel Wait as principal. It was located in the forest of Wake County, North Carolina, on the plantation of Calvin Jones, near which the town of Wake Forest later developed.

Rechartered in 1838 as Wake Forest College, it is one of the oldest institutions of higher learning in the state. It was exclusively a college of liberal arts for men until 1894, when the School of Law was established. The School of Medicine, founded in 1902, offered a two-year medical program until 1941. In that year the school was moved from the town of Wake Forest to Winston-Salem, became associated with the North Carolina Baptist Hospital, and was renamed the Bowman Gray School of Medicine in honor of the benefactor who made possible the move and expansion to a full four-year program. In 1997 the named was changed to the Wake Forest University School of Medicine.

In 1942 Wake Forest admitted women as regular undergraduate students.

A School of Business Administration was established in 1948 and for over two decades offered an undergraduate program of study in business. In 1969 the Babcock Graduate School of Management was formed and the professional program for undergraduates was phased out. On September 12, 1980, the undergraduate program in business and accountancy was reconstituted as the School of Business and Accountancy. In 1995, the name was changed to the Wayne Calloway School of Business and Accountancy. The Division of Graduate Studies was established in 1961. It is now organized as the Graduate School and encompasses advanced work in the arts and sciences on both the Reynolda and Bowman Gray campuses in Winston-Salem. The Divinity School was established in 1999. The summer session was inaugurated in 1921.

In 1946 the Trustees of Wake Forest College and the Baptist State Convention of North Carolina accepted a proposal by the Z. Smith Reynolds Foundation to relocate the non-medical divisions of the College in Winston-Salem, where the School of Medicine was already established. The late Charles H. Babcock and his wife, the late Mary Reynolds Babcock, contributed a campus site, and building funds were received from many sources. Between 1952 and 1956 the first fourteen buildings were erected in Georgian style on the new Winston-Salem campus. In 1956 the College moved all operations, leaving the 122-year-old campus in the town of Wake Forest to the Southeastern Baptist Theological Seminary. The decade that followed was the College’s most expansive, and in 1967 its augmented character was recognized by the change in name to Wake Forest University. Today enrollment in all schools of the
University stands at over 6,000. Governance remains in the hands of the Board of Trustees, and development for each of the six schools of the University is augmented by Boards of Visitors for the undergraduate College, the Calloway School of Business and Accountancy, the Graduate School, the School of Law, the Babcock Graduate School of Management, the Divinity School, and the Wake Forest University School of Medicine. A joint board of University trustees and trustees of the North Carolina Baptist Hospital is responsible for the Medical Center, which includes the hospital and the medical school. Alumni and parents’ organizations are also active at Wake Forest, and support by the Z. Smith Reynolds Foundation and other foundations and corporations is strong and continuing.

Wake Forest’s relationship with the Baptist State Convention is an important part of the school’s heritage. Wake Forest’s founders proposed to establish an institution that would provide education under Christian influences. Wake Forest and the Convention have a fraternal, voluntary relationship under which Wake Forest is autonomous in governance. The University is an associate member of the Convention’s Council on Christian Higher Education. Wake Forest receives some financial and intangible support from Convention-affiliated churches.

The libraries of Wake Forest University support instruction and research at the undergraduate level and in the disciplines awarding graduate degrees. The libraries of the University hold membership in the Association of Southeastern Research Libraries and in the Association of College and Research Libraries. They rank among the top schools in the southeast in library expenditures per student.

The Wake Forest University libraries hold more than 1.7 million volumes in print, over 16,000 subscriptions to periodicals and serials, over one and a half million microforms, as well as growing media collections. All Wake Forest University libraries share an online catalog that also provides access to electronic resources, databases, and an ever-increasing collection of electronic journals, all accessible via the campus network and on the internet.

Bowman Gray Campus

The Coy C. Carpenter Library of the Medical Center is located on the first floor of the 32,000 square-foot building is the site of a physics program offering hands-on research and a significantly enlarged laser physics lab.

The undergraduate faculties offer courses of study leading to the baccalaureate in over forty departments and interdisciplinary areas. The School of Law offers the juris doctor degree and the Babcock Graduate School of Management the master of business administration degree. In addition to the doctor of medicine degree, the School of Medicine offers, through the Graduate School, programs leading to the master of science and doctor of philosophy degrees in the biomedical sciences. The Graduate School also confers the master of arts, master of arts in education, master of arts in liberal studies, master of science in accountancy, master of science degree in the arts and sciences, and the doctor of philosophy degree in biology, chemistry, and physics. The Divinity School offers the master of divinity degree.
medical school’s James A. Gray Building. The library contains extensive collections in all of the medical and surgical specialties and the basic sciences, as well as collections in nursing and allied health. Domestic and foreign periodicals, textbooks, monographs, audiovisuals, and computer software are included. The holdings of the library are accessed via an online catalog system.

The collection contains 155,578 volumes and includes 2,092 medical and related scientific journal titles, more than 2,787 audiovisuals, and over 1,500 online journal and textbook subscriptions. Specific collections deal with the written and oral history of the medical school, the history of neurology and the Suzanne Meads Art in Medicine Collection.

The librarians at the Carpenter Library offer computer-based literature searches, often referred to as online searches. By using MEDLINE and other databases in medicine, the physical and life sciences, social sciences, business, and more, the librarians prepare bibliographies on specific search topics as requested. The library also offers access to MICROMEDEX (clinical drug information), ISI Web of Science (indexes over 8,000 peer-reviewed journals), and other databases.

Document delivery services and inter-library loans are provided.

The library’s Learning Resources Center offers complete classroom facilities for individual and group instruction.

Reynolda Campus

The Z. Smith Reynolds Library holds over 1.4 million volumes, over 1 million reels of microfilm and pieces of microtext, and more than 10,000 DVDs and videos. As a congressionally designated selected federal depository and depository of North Carolina government information, the Reynolds Library holds nearly 170,000 government documents.

The Z. Smith Reynolds Library provides comprehensive reference and research services including, assistance with directed and independent research and online searching; discipline-related library instruction; information literacy classes; general library orientation; and tours. Reference tools are available in electronic and print formats. Wake Forest students, faculty and staff may use inter-library loan services to borrow materials from other libraries throughout the country at no charge.

Special collections in the Z. Smith Reynolds Library include the Rare Books Collection and the Ethel Taylor Crittenden Baptist Historical Collection. The Rare Books Collection, greatly enhanced by the donation of rare and fine books of the late Charles H. Babcock, emphasizes American and British authors of the late nineteenth and early twentieth centuries. Among such collections are those of Mark Twain, Gertrude Stein, William Butler Yeats, and T. S. Eliot. There is also an extensive Anglo-Irish literature collection. The North Carolina Baptist Historical Collection contains significant books, periodicals, manuscripts, and church records relating to North Carolina Baptists, as well as a collection of the personal papers of prominent ministers, educators, and government officials with ties to Wake Forest. The Wake Forest College/University Archive is also maintained in this area.

The entire library is equipped for wireless internet access. Facilities in the Z. Smith Reynolds Library include an Information Technology Center (ITC). Digital imaging, scanning, multimedia services, collaborative workstations, a computer lab, and technology training are available in the ITC. Small group study rooms may be reserved at the circulation desk. In addition, a limited number of locking study carrels can be assigned to graduate students. Two 24-hour study rooms, one of which houses a cyber café, are located near the entrance to the library and may be accessed by keycard.

The Professional Center Library, also located on the Reynolda Campus, supports the Wake Forest University School of Law and the Babcock Graduate School of Business and Management. The Professional Center Library, housed in the Worrell Professional Center, holds over 200,000 volumes.
INFORMATION TECHNOLOGY
ACADEMIC COMPUTING

Bowman Gray Campus

The Office of Academic Computing is dedicated to the development and support of technology innovations in graduate education. The department’s mission is to provide the infrastructure for faculty and students to effectively utilize technologies to augment the lifelong learning process. A key role of the department is to facilitate basic understanding with regard to the uses of technology, not only within education but also within the workplace.

The department has developed a ubiquitous computing environment, focusing on technology standards in hardware, software, and networking. The main strategic initiative has been the development of a Web-based curriculum for the individual programs of the Graduate School. The Web-based curriculum provides an organization framework for the digitized lectures and course materials of each program, education-oriented Web sites, schedules, collaborative discussions, and links to specialty content application.

Incoming graduate students are issued a new IBM ThinkPad through the University. The computer is issued to the student during the orientation week and remains the property of the Graduate School until graduation. The Office of Academic Computing provides technical support for hardware and software issues related to the ThinkPad computers and electronic curriculum. During the hours of 7:30 a.m.-5:30 p.m. Monday through Friday, students can utilize the services of three technical support analysts. After hours technical services are available through the Information Services Help Desk at 716-HELP (4357). In addition to the technical support functions, the office also provides services to the faculty for the development of teaching applications and assistance with the digitization of curriculum content. Three software developers are employed for this specific purpose.

The laptop computers contain a standard suite of powerful programs that allow students easy access to research and class materials and offer the ability to interact with faculty, staff, and other students through the campus network. The programs include Microsoft office, electronic mail, Internet and library browsing, research, analytical, and developmental tools. A large variety of instructional, classroom, and research resources are accessible through the campus network.

Wake Forest has a gigabit Ethernet connection to the Internet. Wake Forest is also a key member of Internet 2, which is focused on providing advanced network technologies, and the North Carolina Research and Education Network (NCREN), which provides statewide educational programs.

Reynolda Campus

Information Systems supports the instruction, research, and administrative needs of the Reynolda Campus of Wake Forest University. The campus computer network offers high-speed wired and wireless connectivity from all residence hall rooms, classrooms, offices and most public areas.

Prior to the beginning of classes, Wake Forest University will provide new graduate students with Wake Forest-owned IBM ThinkPads. This policy does not include students in the Liberal Studies Program (MALS) or Master of Accountancy students who are undergraduates of Wake Forest. Wake Forest retains ownership of the computer until the student graduates. Information Systems provides service and support for the ThinkPad and the standard software that Wake Forest licenses for use by students. Maintenance warranty against manufacturer’s defects is provided for the laptops for a limited time. Students are responsible for the care of the computer and will be subject to full replacement cost for loss or damage not covered by warranty.

Continuing graduate students may lease IBM ThinkPads from Information Systems (336-758-4357) or purchase IBM computers from Wake Forest Computer Sales and
Service located on the Bowman Gray Campus (336-716-9404). These laptop computers contain a standard suite of powerful programs that allow students easy access to research and class materials and offer the ability to interact with faculty, staff, and other students through the campus network. Software programs include Microsoft Office and e-mail and Internet applications like Mozilla and Macromedia Dreamweaver. A large variety of instructional, classroom, and research resources are also available on the ThinkPad. These include the online catalog, databases, and electronic journals provided by the Z. Smith Reynolds Library.

Information Systems provides assistance by telephone at xHELP (x4357) and supports walk-in customers in room 256 of the Information Systems Building from 8 a.m. until 9 p.m. Monday through Thursday; 8 a.m. until 5 p.m. on Friday; and 5 p.m. until 9 p.m. on Sunday. A voicemail retrieval system is activated on weekends and during holiday breaks to respond to emergency calls. In addition, students have 24-hour access to online support resources at http://sos.wfu.edu.

Students also have access to computing resources outside the University. The University is a member of the Inter-University Consortium for Political and Social Research (ICPSR), located at the University of Michigan. Membership in ICPSR provides faculty and students with access to a large library of data files, including public opinion surveys, cross-cultural data, financial data, and complete census data. The University is also a member of EDUCAUSE, a national consortium of colleges and universities concerned with computing issues.

Information Systems maintains an extensive array of online information systems that support University admissions, student registration, grade processing, payroll administration, accounting services, and many other administrative and academic applications. In addition, the Wake Forest Information Network (WIN) provides the University community with features like faculty, staff, and student directories; an alumni directory and career networking service; online class registration; and vehicle registration.

The University has an extensive collection of computing facilities that serve both academic and business needs. An HP 3000/979 and 3000/969 along with 12 LINUX servers and 20 Windows-based servers provide for business computing needs and services. A mix of 47 LINUX and AIX systems and 30 Windows-based systems provide for messaging, systems management, Internet, intranet, courseware, various research needs, and file and print services. A 128-node LINUX supercomputing cluster provides supercomputing services for math, computer science, physics, and other scientific research applications. These systems are available to students, faculty, and staff 24 hours a day through the WFU network or ISP connectivity. All connections are protected by VPN and firewalls.

Wake Forest’s network infrastructure includes a gigabit Ethernet backbone, 100 megabit switched connectivity to the desktop, and pervasive, 802.11a/g wireless connectivity in all classrooms and residence halls and most other campus buildings. Wake Forest has a gigabit Ethernet connection to the Winston-Salem RPOP (regional point of presence) for Internet access. This RPOP connects the University to the North Carolina Research and Education Network (NCREN), the Internet service provider for the majority of North Carolina colleges and universities. Through this connection, Wake Forest has access to additional extensive supercomputing facilities located throughout the state of North Carolina as well as access to all the premiere research networks in the world, including Internet II, Abilene, and the VBNS (Very high performance Backbone Network Service). Wake Forest works closely with NCREN on other advanced network and Internet technologies.
RECOGNITION AND ACCREDITATION

Wake Forest University is accredited by the Commission on Colleges of the Southern Association of Colleges and Schools to award bachelor’s, master’s, and doctoral degrees. The Commission can be contacted at (404) 679-4501, 1866 Southern Lane, Decatur, GA 30033-4097 and http://www.sacscoc.org/. Inquiries should relate only to the accreditation status of the institution, and not to general admission information.

The Wake Forest University School of Medicine is a member of the Association of American Medical Colleges and is fully accredited by the Liaison Committee on Medical Education, the joint accrediting body of the Association of American Medical Colleges and the American Medical Association. The School of Law is a member of the Association of American Law Schools and is listed as an approved school by the Council of the Section of Legal Education and Admissions to the Bar of the American Bar Association and by the Board of Law Examiners and the Council of the North Carolina State Bar. The Babcock Graduate School of Management and the Wayne Calloway School of Business and Accountancy are accredited by the AACSB—The Association to Advance Collegiate Schools of Business. The Babcock Graduate School is accredited by the European Foundation for Management Development. The program in counseling leading to the master of arts degree is accredited by the Council for Accreditation of Counseling and Related Educational Programs.

Wake Forest University is a member of many institutional organizations and associations at the national, regional, and statewide levels, including the following: the American Council on Education, the Association of American Colleges, the National Association of Independent Colleges and Universities, the Council of Graduate Schools, the Commission on Colleges of the Southern Association of Colleges and Schools, the Southern Universities Conference, the Conference of Southern Graduate Schools, Oak Ridge Associated Universities, the North Carolina Conference of Graduate Schools, the North Carolina Association of Colleges and Universities, the North Carolina Department of Public Instruction, and the North Carolina Independent Colleges and Universities. In addition, many offices of the University are members of associations which focus on particular aspects of University administration.

There is an active chapter of the American Association of University Professors on campus.

OAK RIDGE ASSOCIATED UNIVERSITIES

Since 1993, students and faculty of Wake Forest University have benefited from its membership in Oak Ridge Associated Universities (ORAU). ORAU is a consortium of ninety-one colleges and universities and a contractor for the U.S. Department of Energy (DOE) located in Oak Ridge, Tennessee. ORAU works with its member institutions to help their students and faculty gain access to federal research facilities throughout the country; to keep its members informed about opportunities for fellowship, scholarship, and research appointments; and to organize research alliances among its members.

Through the Oak Ridge Institute for Science and Education (ORISE), the DOE facility that ORAU operates, undergraduates, graduates, postgraduates, as well as faculty enjoy access to a multitude of opportunities for study and research. Students can participate in programs covering a wide variety of disciplines including business, earth sciences, epidemiology, engineering, physics, geological sciences, pharmacology, ocean sciences, biomedical sciences, nuclear chemistry, and mathematics. Appointment and program length range from one month to four years. Many of these programs are especially designed to increase the numbers of underrepresented minority students pursuing degrees in science- and engineering-related disciplines. A comprehensive listing of these programs and other opportunities, their
disciplines, and details on locations and benefits can be found at www.orau.gov/orise/educ.htm, or by calling either of the contacts below.

ORAU’s Office of Partnership Development seeks opportunities for partnerships and alliances among ORAU’s members, private industry, and major federal facilities. Activities include faculty development programs, such as the Ralph E. Powe Junior Faculty Enhancement Awards, the Visiting Industrial Scholars Program, consortium research funding initiatives, faculty research, and support programs as well as services to chief research officers.

For more information about ORAU and its programs, contact Dr. Gordon A. Melson, dean, Graduate School of Arts and Sciences and professor of chemistry, ORAU counselor for Wake Forest University, at (336) 758-5301; or Monnie E. Champion, ORAU corporate secretary, at (865) 576-3306; or visit the ORAU homepage at http://www.orau.org.

Application materials and an online application submission process are available at http://www.wfu.edu/graduate
The Graduate School

In accord with the prevailing custom among American colleges during the antebellum period, Wake Forest granted honorary master’s degrees to selected alumni.

By 1862, when the College closed temporarily because of the Civil War, twenty-nine such degrees had been awarded. The first announcement of a program of study leading to an earned graduate degree at Wake Forest was made in 1866. Between 1871, when the first degrees earned under the plan were awarded to John Bruce Brewer (grandson of Samuel Wait) and Franklin Hobgood, and 1951, 383 master of arts and master of science degrees were granted. In 1949 the School of Arts and Sciences discontinued admitting applicants for the master of arts degree because the rapid increase in the size of the undergraduate student body following World War II had overloaded the faculty. The School of Medicine did not interrupt its graduate program. The first master of science degree conferred by the school after it moved to Winston-Salem was awarded in 1943, and the degree was offered regularly thereafter by the departments of anatomy, biochemistry, microbiology, pharmacology, and physiology.

During the fifteen years the College and the School of Medicine were located in different towns, the study of graduate education continued on both campuses. The self-study report adopted by the faculty of the School of Arts and Sciences immediately prior to its move to Winston-Salem recommended that graduate study leading to the master’s degree be resumed as soon as practicable. In 1958 the administration of the School of Medicine, in view of an increasing demand for graduate instruction in basic medical and clinical sciences, appointed a Committee on Graduate Studies for the purpose of reorganizing the graduate program.

As a result of these two parallel studies and in recognition of the need for an institution-wide approach to graduate education, the trustees, on January 13, 1961, established the Division of Graduate Studies and authorized it to grant the master of arts degree in the School of Arts and Sciences and the master of science and doctor of philosophy degrees in the School of Medicine. The first PhD degree was awarded in 1964. In 1967 the master of arts in education degree was added to the graduate program in arts and sciences. A new program, leading to the master of arts in liberal studies, was begun in the summer of 1987. The first PhD program on the Reynolda Campus was begun in 1970. The master of science in accountancy offered in collaboration with the Wayne Calloway School of Business and Accountancy was begun in 1995.

STATEMENT OF PURPOSE

Following is the official statement of the purposes and objectives of the University:

Wake Forest is a University dedicated to the pursuit of excellence in the liberal arts and in graduate and professional education. Its distinctiveness in its pursuit of its mission derives from its private, coeducational, and residential character; its size and location; and its Baptist affiliation. Each of these factors constitutes a significant aspect of the unique character of the institution.

The University is now comprised of seven constituent parts: two undergraduate institutions: Wake Forest College and the Wayne Calloway School of Business and Accountancy; the Graduate School; and four professional schools: the School of Law, the...
Wake Forest University School of Medicine, the Babcock Graduate School of Management, and the Divinity School. It seeks to honor the ideals of liberal learning, which entail commitment to transmission of cultural heritages; teaching the modes of learning in the basic disciplines of human knowledge; developing the critical appreciation of moral, aesthetic, and religious values; advancing the frontiers of knowledge through in-depth study and research; and applying and using knowledge in the service of humanity.

Wake Forest has been dedicated to the liberal arts for over a century and a half; this means education in the fundamental fields of human knowledge and achievement, as distinguished from education that is technical or narrowly vocational. It seeks to encourage habits of mind that ask “why,” that evaluate evidence, that are open to new ideas, that attempt to understand and appreciate the perspectives of others, that accept complexity and grapple with it, that admit error, and that pursue truth. Wake Forest College has by far the largest student body in the University, and its function is central to the University’s larger life. The College and the Graduate School are most singularly focused on learning for its own sake; they, therefore, serve as exemplars of specific academic values in the life of the University.

Beginning as early as 1894, Wake Forest accepted an obligation to provide professional training in a number of fields as a complement to its primary mission of liberal arts education. This responsibility is fulfilled in the conviction that the humane values embodied in the liberal arts are also centrally relevant to the professions. Professional education at Wake Forest is characterized by a commitment to ethical and other professional ideals that transcend technical skills. Like the Graduate School, the professional schools are dedicated to the advancement of learning in their fields. In addition, they are specifically committed to the application of knowledge to solving concrete problems of human beings. They are strengthened by values and goals which they share with the College and Graduate School, and the professional schools enhance the work of these schools and the University as a whole by serving as models of service to humanity.

Wake Forest was founded by private initiative, and ultimate decision-making authority lies in a privately appointed Board of Trustees rather than in a public body. Funded to a large extent from private sources of support, [Wake Forest] is determined to chart its own course in the pursuit of its goals. As a coeducational institution it seeks to ‘educate together’ persons of both sexes and from a wide range of backgrounds—racial, ethnic, religious, geographical, socioeconomic, and cultural….Its residential features are conducive to learning and to the pursuit of a wide range of cocurricular activities. It has made a conscious choice to remain small in overall size; it takes pride in being able to function as a community rather than a conglomerate.

Its location in the Piedmont area of North Carolina engenders an ethos that is distinctively Southern, and more specifically North Carolinian. As it seeks to broaden further its constituency and to receive national recognition, it is also finding ways to maintain the ethos associated with its regional roots.

Wake Forest is proud of its Baptist and Christian heritage. For more than a century and a half, it has provided the University an indispensable basis for its mission and purpose, enabling Wake Forest to educate thousands of ministers and lay people for enlightened leadership in their churches and communities. Far from being exclusive and parochial, this religious tradition gives the University roots that ensure its lasting identity and branches that provide a supportive environment for a wide variety of faiths. The Baptist insistence on both the separation of church and state and local autonomy has helped to protect the University from interference and domination by outside interests, whether these be commercial, governmental, or ecclesiastical. The Baptist emphasis upon revealed truth enables a strong religious
critique of human reason, even as the claims of revelation are put under the scrutiny of reason. The character of intellectual life at Wake Forest encourages open and frank dialogue and provides assurance that the University will be ecumenical and not provincial in scope, and that it must encompass perspectives other than the Christian. Wake Forest thus seeks to maintain and invigorate what is noblest in its religious heritage.

The Graduate School, operating within the framework of these principles, seeks to provide a community of faculty and advanced students dedicated to teaching, research, and productive scholarship. Through graduate programs in the arts and sciences and the basic medical sciences, an effort is made to expand the frontiers of knowledge and to keep abreast of man’s understanding of the rapidly changing human environment. As a significant feature of the educational process, students are encouraged to develop initiative, resourcefulness, and responsibility required of those who become independent intellectual leaders in their chosen fields of endeavor.

STATEMENT OF PRINCIPLE ON DIVERSITY

Wake Forest University is a community of men and women that seeks the enlightenment and freedom which come through diligent study and learning. Its higher goal, however, is to give life to the University motto “Pro Humanitate,” as members translate a passion for knowledge into compassionate service.

The community shares a tradition that embraces freedom and integrity and acknowledges the worth of the individual. The heritage, established by the school’s founders and nurtured by succeeding generations, promotes a democratic spirit arising from open-mindedness and discourse.

Wake Forest fosters compassion and caring for others. Its collective strength and character are derived from the values and distinctive experiences of each individual; therefore, it affirms the richness of human intellect and culture and its contribution to knowledge, faith, reason, and dialogue. Furthermore, it strives toward a society in which good will, respect, and equality prevail. To that end, Wake Forest University rejects hatred and bigotry in any form and promotes justice, honor, and mutual trust.

ADMINISTRATION

The Graduate School is administered by a dean, an associate dean, and a Graduate Council composed of three ex-officio administrative officials, twelve faculty members elected by the Graduate School faculty, and two graduate students elected by the Graduate Student Association. Six of the twelve are members of the College of Arts and Sciences or the Wayne Calloway School of Business and Accountancy faculty (Reynolda Campus) and six are members of the Wake Forest University School of Medicine faculty (Bowman Gray Campus).

Application materials and an online application submission process are available at http://www.wfu.edu/graduate
ALL STUDENTS ARE RESPONSIBLE FOR FAMILIARIZING THEMSELVES WITH THE PORTIONS OF THIS BULLETIN THAT PERTAIN TO THEIR COURSE OF STUDY. STATEMENTS CONCERNING COURSES AND EXPENSES ARE NOT TO BE REGARDED AS IRREVOCABLE CONTRACTS BETWEEN THE STUDENT AND THE INSTITUTION. THE UNIVERSITY RESERVES THE RIGHT TO CHANGE THE SCHEDULE OF CLASSES AND THE COST OF INSTRUCTION AT ANY TIME WITHIN THE STUDENT’S TERM OF RESIDENCE.

DATES FOR APPLYING
The deadline for applications is January 15, although early application is encouraged. Students normally matriculate at the beginning of the fall semester. Students in the Master Teachers Fellows Program matriculate in early June.

HOW TO APPLY
Application materials, as well as the application process, are available on the Web at http://www.wfu.edu/graduate.

FINANCIAL ASSISTANCE
On the Reynolda Campus, tuition scholarships, fellowships, teaching assistantships, and research assistantships are available to qualified students. On request, individual departments or the dean of the Graduate School will supply information regarding levels of support. Assistantships and fellowships include full-tuition scholarships as part of the grant. An assistantship includes a tuition scholarship plus compensation for services rendered. Assistants work from twelve to fifteen hours per week and carry a normal course load.

Acceptance of a fellowship (Bowman Gray campus), teaching assistantship, or research assistantship carries with it the obligation to perform duties assigned by the student’s department. Unsatisfactory performance or failure to complete these assigned duties will result in the withdrawal of all financial aid. In this case, students may be allowed to continue the program by paying the remainder of their own tuition on a pro rata basis, provided they are in good academic standing, or they may be dropped from the program. Exceptions to this regulation may be made on an individual basis involving extraordinary circumstances and with the recommendation of the student’s department.

Assistantships and fellowships are potentially renewable, but the total number of years a student working toward the master’s degree may receive support may not exceed two. A need for financial assistance may be noted on the application form. Information on financial aid awards will be included in the offer of admissions letter.

Some students who receive graduate assistantships may be assigned duties outside the department of study.
The residence life and housing office on the Reynolda Campus has a limited number of hall director and compliance advisor positions available to qualified graduate students. Please note that tuition scholarships may be available for the hall director position. However, such scholarships are not available to students enrolled in divinity, law, liberal studies, MBA, Master Teacher Fellows, and medical programs. Interested students are urged to contact the Office of Residence Life and Housing for more information by calling (336) 758-5185, by e-mail at housing@wfu.edu, or by visiting the housing Web page at www.wfu.edu/housing under “employment.”

A number of full-tuition scholarships and research grants are available for Reynolda continuing students for the summer sessions. Interested persons should contact their respective departments.

Financial support for students on the Bowman Gray campus is provided from various sources, including dean’s fellowships, graduate fellowships, and tuition scholarships. In addition, many students are supported as research assistants from externally funded sources. Fellowships may include tuition scholarships.

The Norman M. Sulkin Scholarship Fund provides scholarship assistance to students in the neurobiology and anatomy PhD program.

The Camillo Artom Scholarship provides annual scholarship grants to one or more students enrolled in programs leading to the MD or PhD degrees with special preference given to students seeking a degree in biochemistry and molecular biology.

The Sandy Lee Cowgill Memorial Scholarship Fund provides scholarships to at least two students, the first of whom shall be enrolled in the MD program and the second of whom may be enrolled in the MD or PhD program, with preference given to a student in biochemistry and molecular biology.

The Lucy Robbins Fellowship Fund provides a scholarship for a current fourth-year graduate student conducting cancer-related research.

Reynolda graduate students who are interested in the Guaranteed/Insured Student Loan Program should request information from their state agency or the Graduate School. North Carolinians may receive applications from College Foundation Inc., P.O. Box 12100, Raleigh, NC 27605-2100. Bowman Gray campus students may contact the financial aid office.

A student must be in good academic standing and must be making satisfactory progress toward the degree to be eligible for a student loan. Unclassified (non-degree seeking) and provisionally accepted students are not eligible for financial aid.

ADMISSION

Eligibility. Undergraduate seniors and graduates of U.S. colleges and universities or recognized foreign institutions may apply for admission to the Graduate School for study on the Reynolda campus or the Bowman Gray campus. Undergraduates must complete their degree requirements prior to entering the Graduate School. Medical students who have satisfactorily completed, or will complete by the end of the spring semester, at least one year of the medical curriculum may apply for admission to the Graduate School. The Graduate School also accepts applications from holders of the MD, DDS, or DVM degrees, or from candidates for these degrees who will have satisfactorily completed the prescribed medical curriculum prior to matriculation in the Graduate School.

Whatever their previous academic training may have been, all applicants should have superior records. This requirement is usually interpreted as at least a B average or standing in the upper quarter of the class or both.

Graduate Record Examinations. All applicants (except for the master of arts in liberal studies, the master of science in accountancy program,
and the combined MD/PhD program) are required to submit official scores on the General Test and the Subject Test* of the Graduate Record Examinations (GRE) administered by the Educational Testing Service, P.O. Box 6000, Princeton, New Jersey 08541-6000 (www.ets.org). Usually these examinations are taken in the fall of the student’s senior year. When applying to take the GRE, applicants should enter the Wake Forest University Graduate School code 5885 for programs of study on the Reynolda campus, or 5920 for programs of study on the Bowman Gray campus. Test scores will be mailed from Education Testing Service.

*The GRE Subject Test is recommended but not required for the Departments of Chemistry, English, Physics, and Psychology. The other Reynolda Campus departments and Bowman Gray Campus programs do not require the subject test.

Graduate Management Admission Test. Applicants to the master of science in accountancy program are required to submit official Graduate Management Admission Test (GMAT) scores. The GMAT is administered online by the Educational Testing Service, P.O. Box 6103, Princeton, New Jersey 08541-6103. When applying to take the GMAT, applicants should enter the Wake Forest University Graduate School code 5885. Test scores will be mailed from Educational Testing Service.

Test of English as a Foreign Language. An official test is required if college instruction was not in English; the minimum total score is 550 (paper-based test) or 213 (computer-based test). For the liberal studies program, the minimum total score is 650 (paper-based test). The TOEFL bulletin of information and registration form can be obtained at American embassies and consulates, offices of the United States Information Service, United States educational commissions and foundations abroad, and at bi-national centers. Students unable to obtain a bulletin from one of the above should write to: Test of English as a Foreign Language, P.O. Box 6155, Princeton, New Jersey 08542-6155, USA or contact the Web site, www.toefl.org. Administrations of TOEFL are coordinated with the GRE and are available in most countries. Correspondence should be initiated at least three months before the testing date. When applying to take the TOEFL, applicants should enter the Wake Forest University Graduate School code 5885. Test scores will be mailed from Educational Testing Service.

International English Language Testing System. IELTS is jointly managed by the British Council, IDP:IELTS Australia, and the University of Cambridge ESOL Examinations. The IELTS is available at 270 test centers worldwide. The minimum score on the IELTS is 6.5. To obtain information regarding this test and the centers, please visit www.ielts.org. Personal Interviews. Although not required of all students, personal interviews are encouraged and may be specified as a requirement for some programs. For more information, contact the program director.

Transfer Students. Applicants for the master’s degree who have completed a portion of their graduate training in another institution are eligible for admission but may not transfer for credit more than six semester hours of coursework. This limitation does not apply to applicants for the PhD degree. An official release letter is required from the applicant’s current institution.

Admission of Students With Disabilities

Wake Forest University will consider the application of any qualified student, regardless of disability, on the basis of the selection criteria established by the University which include personal and academic merit. Upon matriculation, all students will be required to meet the same standards for graduation.

The University endeavors to provide facilities which are in compliance with all laws and regulations regarding access for individuals with disabilities. Additionally, special services are available to reasonably
Admission Categories

Regular Status in a Degree Program. A person with a superior undergraduate record (at least a B average or upper quarter of the class and with the appropriate courses), satisfactory GRE scores or GMAT scores (for an individual applying to the master of science in accountancy program), and good recommendations may apply for regular admission. The liberal studies program has a separate and distinct set of application procedures. For further information, write to the Liberal Studies Program Director, Wake Forest University, P.O. Box 6103, Winston-Salem, NC 27109-6103.

Provisional Status in a Degree Program. Those who may be awaiting GRE or GMAT scores or at the time of application have grades slightly below those specified for regular admission may be granted provisional admission. Provisional status is limited to not more than one semester of full-time study or its equivalent in part-time study.

Unclassified Non-Degree Graduate Status. Applicants seeking courses for graduate credit but not wishing to work for a graduate degree may apply for admission as unclassified or non-degree status. Applicants are required to complete an application, submit a $45 application fee, meet the immunization requirements, and submit an official transcript showing a baccalaureate degree at least one month prior to matriculation. Instructor approval is required for each course prior to enrollment.

Classification of Students

Full-Time Status. A student who devotes full-time to a graduate program as outlined by his or her faculty committee and is in full-time geographic residence with a minimum of nine semester hours of course work, including thesis research, is considered a full-time student. Students registered as “thesis only” or “graduate fee only” may be considered full-time.

Part-Time Status. A student registered for less than the above amount of coursework is considered a part-time student. Each department will determine whether it is possible to pursue a degree on a part-time basis. If a department is willing to accept a part-time student, that department, the student, and the dean of the Graduate School shall enter into a letter of agreement specifying the terms on which the individual may satisfy the program’s requirements on a part-time basis.

Tuition and Fees

The following statements concerning expenses are given as information to prospective students. They should not be regarded as forming a contract between the student and the University. The costs of instruction and other services outlined here are those in effect on the date this material was printed. Wake Forest University may change the cost of instruction and other services at any time.

2005-2006 Fee Schedule

<table>
<thead>
<tr>
<th>Service</th>
<th>Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-time Tuition</td>
<td>$25,700</td>
</tr>
<tr>
<td>Fall 2005 and Spring 2006 (minimum 9 hours)</td>
<td></td>
</tr>
<tr>
<td>Part-time Tuition per hour</td>
<td>$915</td>
</tr>
<tr>
<td>Audit Fee per hour (Part-Time Students)</td>
<td>$50</td>
</tr>
<tr>
<td>Summer Session</td>
<td></td>
</tr>
<tr>
<td>Reynolda Campus (per semester hour)</td>
<td>$500</td>
</tr>
<tr>
<td>Bowman Gray Campus (per semester)</td>
<td>$300</td>
</tr>
</tbody>
</table>

Students on either campus not enrolled in classes but using University facilities or faculty time for such projects as the completion of a thesis are required to register and pay a graduate student fee of $30 per semester or $15 for each term of the summer session.
Students must be enrolled for the semester in which they graduate.

During both the academic year and the summer session, full-time graduate students on either campus may take graduate courses on the other campus without additional tuition.

Reynolda Campus. Students pay a fee at the time of graduation which covers the binding of five copies of the thesis or dissertation, a cap and gown, and a standard diploma.

Bowman Gray Campus. Students pay a $35 fee at the time of graduation which covers the cost of binding the thesis or dissertation and the rental of academic regalia.

Doctoral candidates on both campuses pay $55 at the time of graduation to have their dissertations added to the University Microfilms International (UMI) database and to have their abstracts published in Dissertation Abstracts International.

There is a tuition concession plan for faculty and staff of the University and for the spouses of faculty and eligible staff members. For further information, consult the human resources office. The Graduate School grants a one-half tuition rate for educators teaching full-time in public schools or state-approved non-public schools. This policy covers only educators who teach in grades kindergarten through 12th and community college institutions.

Graduate students enrolled for full-time and part-time status are entitled to full privileges regarding libraries, laboratories, athletic contests, student publications, the Student Union, the University Theatre, the Secrest Artists Series of Wake Forest University, and the Student Health Service.

During the academic year, all students, full- and part-time, receive tuition refunds according to the following schedule. This policy applies to students dropping courses as well as to those withdrawing. Withdrawals must be official and students must turn in their identification cards before claiming refunds.

<table>
<thead>
<tr>
<th>Number of Weeks in Attendance</th>
<th>% of Total Tuition Refunded</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
</tr>
<tr>
<td>2</td>
<td>75%</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
</tr>
<tr>
<td>4</td>
<td>25%</td>
</tr>
</tbody>
</table>

Counting from the first day of classes; fractions of a week count as a full week. For liberal studies students, the counting begins with the first day of class.

HOUSING SERVICES

The Graduate School does not require that students live in University housing. Most students make their own arrangements for housing off campus. The Office of Residence Life and Housing (Benson 101) serves as an information center for individuals who wish to advertise rooms, apartments, and houses for rent or sale. It also provides a place for students to list information if they are interested in finding a roommate to share expenses. Off-campus facilities are not screened. The University serves only as an information source and does not assume responsibility for placement, lease agreements, or landlord-tenant relations.

Graduate students who live in University housing are expected to follow the regulations and conditions governing occupancy as stated in the lease or contract agreement. Bowman Gray campus students may apply for a Medical Foundation apartment or secure housing in other facilities near the Medical Center.

It is advisable to make housing arrangements as early as possible as space is
very limited for both single and married students. For information regarding available off-campus University housing on the Reynolda campus, students should contact Patti Hull, real estate manager, (336) 758-5584.

FOOD SERVICES
The Wake Forest dining service offers a variety of locations where students can use their Deacon OneCard. Seven dining locations on the Reynolda campus offer a variety of food options and atmospheres: The Fresh Food Company at Reynolda Hall, The Benson Food Court, Shorty’s, The Magnolia Room, The IS Food Court, and three convenience stores (The Sundry, Polo Area Sundry, and Bodega). Cafeterias and fast-food services are also available on the Bowman Gray campus.

The Deacon OneCard is a declining balance account available with your student ID card. Money can be added to the account during the semester with a deposit of $25 or more cash, check, or money order or $100 or more with MasterCard or Visa.

For additional information, please contact ARAMARK Dining Services, P.O. Box 7393, Winston-Salem, NC 27109-7393, by telephone (336) 758-5607 or stop by the ARAMARK offices at 31C Reynolda Hall.

STUDENT HEALTH SERVICE
Bowman Gray Campus
Students are assigned to physicians in the Department of Family and Community Medicine for provision of primary care services. Spouses and dependent children may request the services of the assigned physician.

Members of the faculty serve as student’s physicians. The Wake Forest University physicians clinics are held Monday through Friday, by appointment, for preventive and therapeutic services. Physicians are available for emergencies twenty-four hours a day, seven days a week, through an answering service. The student’s medical insurance company will be billed for all visits after deductible and co-pay are met.

Students are required to have adequate health insurance. Any charges generated that are not covered by the student’s insurance policy will be the personal responsibility of the student. Students may enroll in the student health and accident insurance plan. Information on this plan will be forwarded to you for your consideration.

Prior to matriculation, each student is required to complete a health assessment questionnaire, have a complete physical exam, and have updated immunizations at his/her expense.

The Medical Center Employee Health Services will have the responsibility for monitoring compliance with the below mentioned immunization requirements as well as being responsible for ongoing tuberculosis screening done on a yearly basis. Employee Health Services also will manage any blood and body fluid exposures, as well as provide acute care clinics at no charge.

IMMUNIZATION POLICY
Bowman Gray Campus
Wake Forest University and North Carolina State law require that all new, transfer, readmit, unclassified or visiting students, except those with a valid exemption, submit certification of certain immunizations PRIOR TO REGISTRATION. Documentation should be on or attached to the completed immunization form provided by the Medical Center Employee Health Services. Acceptable documentation is (1) the signature of the appropriate official(s) having custody of the immunization records, such as a physician or county health department official, or (2) a certificate from the student’s former school containing the approved dates of immunizations, or (3) photocopies of the original records.

1. Tetanus and Diphtheria (Td). Students must document a booster less than ten years old.
2. **Rubeola (Measles).** Students must document two doses of live virus measles vaccine, given at least thirty days apart, on or after their first birthday (after 3/21/63*). If they were born prior to 1/1/57, they must have documentation of a titer indicating that they are immune, or documentation of vaccinations with live virus vaccine.

3. **Rubella (German Measles).** Students must document that they have had one dose of live virus vaccine on or after their first birthday (after 6/9/69*), or they must have documentation of a titer indicating they are immune. History of the disease is not acceptable.

4. **Mumps.** Students must document that they have had one dose of live virus mumps vaccine on or after their first birthday (after 12/28/67*), or if they were born before 1/1/57 they must have documentation of a titer indicating they are immune.

5. **PPD tuberculin skin test** is required; a tine test will not be accepted. The test must have been done after March of this current year. If the student is known to be tuberculin-positive or if the test result is positive, attach record of treatment and chest x-ray results.

6. **Hepatitis B.** A three-dose series of the vaccine with a confirmatory positive titer is recommended (not required).

7. **A varicella titer result** is required—without exception.

* Indicates date the vaccine was licensed by the FDA. Combination vaccines have different licensure dates.

The North Carolina requirements must be documented within thirty days following enrollment. After that time, unimmunized students cannot attend classes until their immunizations are documented. Please note that the Hepatitis B series requires several months for completion.

Questions regarding these requirements should be directed to Employee Health Services at (336) 716-4801.

STUDENT HEALTH SERVICE

George C. Mackie Health Center

Reynolds Gymnasium, Reynolda Campus

The Student Health Service promotes a healthy lifestyle through health education and health maintenance. A physician-directed medical staff offers urgent care, illness care, physical examinations, counseling, limited psychiatric care, allergy injections, immunizations, gynecological services, sports medicine clinic, pharmacy, laboratory, referral to specialists, confidential HIV testing, and travel information. A full staff is available by appointment during clinic hours: 8:30 a.m. to noon, 1:30 to 4 p.m., Monday through Friday during the academic year and Monday through Thursday during the summer. A limited staff is available for urgent care and observation 24 hours a day, 7 days a week, when school is in session during the academic year. The services of the staff are covered by tuition. There is a charge for medicines, laboratory tests, some supplies and services, and observation care.

Health Information Summary Form. Reynolda Campus graduate students are required to have on file in the Health Service the WFU Health Information Summary and Immunization Form. This form will be sent from the Graduate School, or you may download it at http://wfu.edu/shs. The form includes documentation of immunizations required by the University and the State of North Carolina (as described on this page). It must be received by the Student Health Service by July 1 for fall semester and by December 1 for spring semester.

Health Insurance. University policy requires that all students have health insurance. Information about the student group insurance plan is mailed to all students from Financial and Accounting Services during the summer.
Information is available online, www.wfu.edu/shs or www.studentresources.com. Students are strongly encouraged to review their current plan to assure adequate coverage.

Confidentiality. Medical information and records are strictly confidential. Information or records are not released to University officials, friends, family members or therapists and physicians not involved in the student’s immediate care without the student’s permission.

Inclement Weather. When the University is closed due to inclement weather, the Student Health Service will have limited staff and will be able to provide care only for injuries and urgent illnesses. Appointments will be rescheduled.

Retention of Medical Records. Student medical records are retained for ten (10) years after the last treatment, after which time they are destroyed. Immunization records are kept longer.

IMMUNIZATION POLICY

Reynolda Campus

Wake Forest University and North Carolina State law require that all new, transfer, readmit, unclassified, or visiting students, except those with a valid exemption, submit certification of certain immunizations PRIOR TO REGISTRATION. Documentation should be on or attached to the completed Health Information Summary Form in order to assure correct identification of the student. Acceptable documentation is a statement signed by the appropriate official(s) having custody of the records of immunization, such as a physician or county health department director, or a certificate from a student’s former school containing the approved dates of immunizations.

The American College Health Association recommendations and North Carolina State law require certification in accordance with the following:

Required:

1. Tetanus and Diphtheria (Td). Students must document a Td immunization series and a booster within ten years of enrollment.

2. Rubeola (Measles). Students must document two doses of live virus measles vaccine given at least 30 days apart, on or after their first birthday (after 3/21/63*) unless (a) they have a physician’s certificate which states that they have had measles prior to January 1, 1994, (b) they were born prior to 1/1/57, or (c) they have documentation of a titer indicating they are immune.

3. Rubella (German Measles). Students must document that they have had one dose of live virus measles vaccine on or after their first birthday (after 6/9/69*) unless (a) they have documentation of a titer indicating they are immune, or (b) they will be fifty years old before they enroll. History of the disease is not acceptable.

4. Mumps. Students must document that they have had one dose of live virus mumps vaccine on or after their first birthday (after 12/28/67*) unless (a) they were born before 1/1/57, or (b) they have documentation of a titer indicating they are immune. History of the disease is not acceptable.

5. Polio. Students must document that they have had trivalent polio vaccine unless they will be eighteen years old or older when they enroll. A booster is recommended for students traveling to countries where polio is endemic.

6. Tuberculin skin test. The test is required within twelve months of the University registration date if (a) the student has been exposed to tuberculosis or (b) the student’s home country is other than United States, Australia, New Zealand, Canada, Western Europe or Japan. If the student is known to be tuberculin-positive or if the test result is positive, attach record of treatment.

* Indicates date the vaccine was licensed by the FDA. Combination vaccines have different licensure dates.
Recommended:

1. **Hepatitis B.** A three-dose series of the vaccine is recommended by the Centers for Disease Control.

2. **Varicella.** The two-dose series is recommended. Discuss with your health care provider.

Questions regarding these requirements should be directed to the Student Health Service at (336) 758-5218.

VEHICLE REGISTRATION

All students residing on the Reynolda campus and Bowman Gray campus (including all student and faculty apartments, satellite housing, language and theme houses) must register vehicles they are operating day or night, whether or not owned by the operator. All vehicle registrations must be completed within twenty-four hours from the time the vehicle is first brought to campus or the next business day. Vehicles are registered online via the WIN system. Use your WIN password to sign in. Go to the personal section and select “Register your Vehicle.” For more information, telephone (336) 758-6129, 8:30 a.m.-4 p.m., Monday-Friday.

University Police and Student Shuttle Service provide safe rides when requested by dialing 758-5591 at night. The shuttle runs a daytime fixed route with marked stops around the Reynolda campus. After dusk the shuttle is available by calling 758-RIDE (7433). The shuttle schedule is available online at www.wfu.edu/police/shuttle.html.

Bowman Gray campus students may sign up for paid-monthly parking at orientation. Those who take classes on the Reynolda campus, including audit and thesis credit, or use other facilities, may register their vehicles to park in an off-campus lot at no charge. To park on campus, a commuter student decal must be purchased. Students are responsible for their visitors. Students will be held financially responsible for citations issued to vehicles driven by family members or by friends who use a WFU/Bowman Gray student’s vehicle.

UNIVERSITY IDENTIFICATION CARDS

Bowman Gray Campus

Arrangement is made with Human Resources during orientation for each student to obtain a photo identification card.

Reynolda Campus

All students are required to obtain an ID card and to have it with them at all times while on campus. Cards may be obtained from the Deacon OneCard Office, Room 139, Benson Center, between the hours of 8:30 a.m. to 5 p.m., Monday-Friday. For further information, call 758-1949.

CAREER SERVICES

The Office of Career Services (OCS) offers a full range of career services including job search guidance, internship opportunities, full-time vacancy listings, and library resources. Other services include resume consultations and mock interviews.

Students enrolled in graduate programs are encouraged to consult the OCS office as early as possible regarding the services described above.

The Career Services office is located in 8 Reynolda Hall (Reynolda Campus). Office hours are 8:30 a.m.-5 p.m., Monday-Friday. Appointments may be made in person or by calling (336) 758-5902.

UNIVERSITY COUNSELING CENTER

The University Counseling Center, located in 118 Reynolda Hall (Reynolda Campus), provides short-term counseling and consultation. All services are confidential, and no fees are charged to students. The Center offers counseling for a variety of concerns such as
personal adjustment, managing stress, developing career plans, and relationship issues. The Center is open Monday-Friday from 8:30 a.m. to 5 p.m. Psychological emergencies after hours are handled in cooperation with the Student Health Service.

GRADING

Records of progress are kept by the institution on all students enrolled. Grade reports are furnished to students at the end of each semester or summer term.

The grade of I (incomplete) may be assigned only when a student fails to complete the work of a course because of illness or some other emergency. If the work recorded as I is not completed within thirty days after the student enters for his or her next semester, not counting the summer session, the grade automatically becomes F. The instructor must report the final grade to the registrar within forty-five days after the beginning of that semester. In no case is a graduate degree awarded to a student who has an I or NR on record. Incomplete grade forms are available in the appropriate Graduate School office. The grade of NR must also be resolved within forty-five days after the beginning of the next semester or the grade automatically becomes F.

MInimum Grade Requirements. A student whose cumulative grade point average (GPA) falls below 2.5 will be placed on academic probation. The student will have one semester to bring his/her GPA to 2.5 or greater; otherwise, the student may be dismissed from the Graduate School by the dean. The grade point average is obtained by dividing the total number of grade points earned by the total number of hours attempted for a grade, including hours for courses in which the grade is F. Satisfactory/unsatisfactory grades do not enter into the GPA.

<table>
<thead>
<tr>
<th>Grades Assigned</th>
<th>Grade Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Excellent</td>
<td>4.00</td>
</tr>
<tr>
<td>A-</td>
<td>3.67</td>
</tr>
<tr>
<td>B+</td>
<td>3.33</td>
</tr>
<tr>
<td>B Good</td>
<td>3.00</td>
</tr>
<tr>
<td>B-</td>
<td>2.67</td>
</tr>
<tr>
<td>C+</td>
<td>2.33</td>
</tr>
<tr>
<td>C Low Pass</td>
<td>2.00</td>
</tr>
<tr>
<td>F Failed (counted as hours attempted)</td>
<td></td>
</tr>
<tr>
<td>I Incomplete (becomes passing grade or F)</td>
<td></td>
</tr>
<tr>
<td>AUD Audit</td>
<td></td>
</tr>
<tr>
<td>DRP Official Drop (not counted as hours attempted)</td>
<td></td>
</tr>
<tr>
<td>NC No credit</td>
<td></td>
</tr>
<tr>
<td>NR Grade not reported (becomes passing grade or F)</td>
<td></td>
</tr>
<tr>
<td>WD Withdrew (not counted as hours attempted)</td>
<td></td>
</tr>
<tr>
<td>WP Withdrew passing (not counted as hours attempted)</td>
<td></td>
</tr>
<tr>
<td>WF Withdrew failing (not counted as hours attempted)</td>
<td></td>
</tr>
<tr>
<td>S Satisfactory</td>
<td></td>
</tr>
<tr>
<td>U Unsatisfactory</td>
<td></td>
</tr>
<tr>
<td>RPT Course repeated (see repeating a course)</td>
<td></td>
</tr>
</tbody>
</table>

Individual departments may require a higher grade point average than 2.5 for continuation. If there is such a requirement, it is stated in the departmental policies. A student may be dismissed from the Graduate School by the dean upon recommendation of his or her department or program if he or she does not make adequate progress in research. Adequate progress is determined by the standards of the department or program in which the student is enrolled.

The minimum grade point average required for graduation is 3.0. PhD candidates must have a grade point average of 3.0 in graduate courses at the time of the preliminary examination.

Repeating a Course. Beginning with fall 1999 courses, a graduate student may repeat a course in which a B- or lower grade has been received. The course may be counted only one time for credit. The higher grade earned will be counted in calculation of grade point average. Both grades will appear on the transcript.
Dropping a Course. With the approval of the advisor and instructor, a student may drop a course during the first month of a semester or the equivalent period during a summer term without penalty or notation on the transcript.

A student who is permitted to drop a course after the first month, with the approval of the dean of the Graduate School and the department concerned, is assigned a Drop (DRP). Courses marked Drop are not counted in determining the grade point average.

Add/Drop forms may be accessed at www.wfu.edu/graduate/currentstudent.html.

Auditing a Course. Auditing a course consists of participation in a course without receiving a letter grade or credit hours. When space is available after registration of students enrolled for credit, others may request permission of the instructor to enter the course as auditors. In no case may anyone register to audit a course before the first meeting of the class. No additional charge is made to full-time students in the Graduate School of Arts and Sciences; for others the fee is $50 per hour. In addition to the permission of the course instructor, permission of the advisor is required for degree-seeking students. An auditor is subject to attendance regulations and to other requirements of performance established by the instructor. Although an auditor receives no credit, a notation of audit is made on the final grade report and entered on the record of enrolled students who have met the instructor’s requirements.

Leave of Absence. Degree-seeking students must have continuous enrollment through the semester in which they graduate. Enrollment may be achieved by registering for courses, including research, or by registering as Thesis Only or Graduate Fee.

Full-time students who wish to take a leave of absence must receive approval from the department concerned and the dean of the Graduate School. The student must submit a leave of absence request in writing, be in good academic standing, complete forms required by the Graduate School for courses in progress, and provide letters of support from the Program Director and Advisor. The maximum time for a leave of absence is one academic year.

One month prior to the beginning of the semester in which the student plans to re-enter the Graduate School, a written reinstatement request must be sent to the dean of the Graduate School. The time spent during the leave of absence will not count in the maximum time allotted for the degree. If a student on an approved leave has not requested reinstatement after a year, the student will be considered to have withdrawn from Graduate School.

Transferring to a Different Program. A student who wishes to transfer from one program to another should be allowed to do so provided the standards of the new department or program are met. The student should contact the graduate director of the department or program to which he or she wishes to transfer. After consultation with the graduate director, the student should interview with one or more prospective advisors. If a prospective advisor is identified, the student’s transfer request may be considered further.

Upon receipt of a written request from the student, the Graduate School shall forward credentials from the student’s file to the graduate director for evaluation and consideration of financial aid. At the conclusion of this process, the graduate director sends a transfer recommendation to the dean of the Graduate School for approval. The student is not required to withdraw from an existing program until the transfer request to the new department has been approved and financial aid is available.

It is understood that the department or program from which the student is transferring would have no further financial responsibility for the student. The student must, however, complete the formal process of withdrawing from the original program by the end of the current semester.
Withdrawal from the University. Students who wish to withdraw from the Graduate School must complete the appropriate form, which requires approval from the department concerned and the dean of the Graduate School. Students who leave without following this procedure shall receive a grade of F in each course in progress. Students on the Reynolda campus who were issued a Graduate School laptop computer are required to return it to Information Systems. Students on the Bowman Gray campus are required to return their laptop computers to the Graduate School office.

Students who withdraw by the drop date, established by the academic calendar, of the semester will not have a grade recorded for courses in progress. Students who withdraw after the drop deadline shall be assigned a grade of Withdraw-Passing or Withdraw-Failing for each course in progress.

Students who have withdrawn from the Graduate School and wish to return within one academic year must request reinstatement in writing to the dean of the Graduate School at least one month prior to the semester in which they wish to re-enter. To be reinstated the student must be in good academic standing and receive approval from the graduate program and the dean of the Graduate School. The time spent during this one year of withdrawal will not count in the maximum time allotted for the degree. Students who have withdrawn from the Graduate School and who wish to re-enter after one academic year must reapply for admission as stated in the Graduate Bulletin by the application deadline, and must be recommended by the program and accepted by the dean of the Graduate School.

If a student is approved for readmission to the Graduate School within a five-year period, previous coursework may count towards the degree requirements at the discretion of the dean of the Graduate School on the recommendation of the graduate program concerned. If the student re-enters Graduate School after a five-year period, previous courses will not count in the degree requirements.

STATEMENT ON STUDENT RIGHTS AND RESPONSIBILITIES

The graduate faculty has adopted a formal statement regarding student rights and responsibilities. The statement is a guideline to be used by students with respect to an honor code which applies to both teaching and research endeavors. It also includes clearly defined procedures for the handling of student grievances should they arise.

PATENTS POLICY

Inventions and Patents. During a student’s course of study, he or she may participate in research or other work which leads to an invention or discovery. These inventions or discoveries are the property of the University. The University’s Inventions and Patent Policy is applicable to student inventions with respect to the definition of inventions covered, resolution of disputes, and the division of proceeds, including the determination of the inventor(s) share of any proceeds. Under this policy, a program exists to determine patentability and commercial value of each invention. Advice and guidance regarding this policy are available from the University Technology Transfer Service.
DEGREES OFFERED

The Graduate School of Arts and Sciences offers graduate programs leading to the master of arts, master of arts in education, master of arts in liberal studies, master of science, master of science in accountancy, and doctor of philosophy degrees. For a description of the programs, see Courses of Instruction. “Instructions for the Preparation of Theses and Dissertations” may be obtained from the graduate school Web site. All candidates who receive graduate degrees in August, December, or May are expected to attend the May Commencement of that school year unless excused by the dean of the Graduate School.

FOREIGN LANGUAGE/SPECIAL SKILL

Some programs may require students to demonstrate a reading knowledge of an appropriate foreign language or competence in a special skill such as statistics or computer programming and operation. Refer to each program’s statement to see if there is such a requirement and how it may be satisfied.

ADMISSION TO CANDIDACY

Admission to graduate standing does not necessarily commit the student or the University to a program of study leading to a graduate degree. Students who wish to become candidates for degrees must file applications for candidacy with the dean of the Graduate School at least three months before the graduate degree is conferred.

MINOR PROGRAM IN BIOMEDICAL SCIENCES

A certified minor, indicated as such on the official transcript, may be obtained in some programs within the biomedical sciences (Bowman Gray campus) by completing twelve semester hours of coursework, including specific courses as required by individual programs. Program directors should be consulted for details.

REQUIREMENTS FOR THE MASTER OF ARTS DEGREE

Programs of study leading to the master of arts degree are offered in communication, English, mathematics, psychology, and religion. The degree is awarded to candidates who complete a minimum of twenty-four semester hours of faculty-approved coursework with an average grade of B or above on all courses attempted, meet any foreign language or special skills requirement, and write an acceptable thesis (if required) for which six hours of credit toward the thirty required for graduation are allotted. Students may earn additional credit for thesis research, but such hours may not be substituted for the twenty-four hours of coursework required.

Residence Requirements. The minimum residence requirement is one academic year or three summer sessions. In practice, most students in the arts require at least a summer
session in addition to the academic year, and most science students require two years. In all cases, work for the degree must be completed within six calendar years of the date of initial enrollment in the Graduate School.

Course Requirements. At least twelve of the twenty-four hours in coursework (not counting thesis research) required for the degree must be in courses numbered 700 or above. The remaining twelve hours may be in either 600-level or 700-level courses. Credit may be allowed for as many as six hours of graduate work transferred from another institution, but the minimum residence requirement is not thereby reduced.

Thesis Requirement. Six of the thirty hours required for the MA degree are allotted for the thesis. Although six semester hours are recorded when a thesis is approved, no letter grade other than S or U is ever assigned for the courses titled Thesis Research. If a U is assigned, the course must be repeated and an S earned before the degree can be awarded. Theses are written under the supervision of the student’s advisory committee (an advisor and a first and second reader). The student should confer with the program director concerning the membership of the committee.

Foreign Language or Special Skills Requirement. Some departments may require students to demonstrate a reading knowledge of an appropriate foreign language or competency in a special skill, such as computer programming. Refer to each program’s statement to see if there is such a requirement and how it may be satisfied.

Admission to Degree Candidacy. A student is admitted to degree candidacy by the dean of the Graduate School after recommendation by the major department. The student must have satisfactorily met any foreign language or special skills requirement and is expected to complete the master’s degree requirements with one additional semester’s work.

Final Examination. The examining committee for the thesis shall consist of at least three members of the graduate faculty, including the advisor. The committee shall be appointed by the dean of the Graduate School and may include one member from outside the student’s department or program. With the approval of his or her advisor, a student may recommend a faculty member from outside the department or program to serve on the examining committee. The thesis advisor must justify the participation of external experts who are not members of the graduate faculty on the basis of research, publications and/or professional activities. If the external expert is to be a voting and signing member of the examining committee, the advisor must communicate to the dean of the Graduate School, in writing, the qualifications of the external expert. The examination covers the thesis and knowledge in related areas and is conducted at least ten days prior to graduation. A student may be reexamined only once.

Requirements for the Master of Arts Degree in Counseling

The master of arts degree in counseling is awarded to candidates who successfully complete a minimum of sixty hours in a planned and directed program of study with an average of B or above in all courses attempted. The program consists of thirteen required core courses, three clinical (field experience) courses, and three courses in one of the two program specialty areas (the school counseling program or the community counseling program).

The School Counseling Program. The school counseling program is designed to provide prospective school counselors with the knowledge, skills, and competence necessary to establish and conduct effective developmental guidance and counseling programs in schools, kindergarten through the twelfth grade. The course of study which leads to a license in school counseling in North Carolina is based on the requirements of the North
Carolina State Board of Education and is accredited by the National Council for Accreditation of Teacher Education and by the Council on Accreditation of Counseling and Related Educational Programs (CACREP). School counseling students are not required to hold a teacher’s license to enter the program.

The Community Counseling Program. In the community counseling program, students are prepared for counseling in a wide variety of community settings and agencies. The course of study is accredited by the Council on Accreditation of Counseling and Related Educational Programs (CACREP). Students are admitted on a full-time basis only and all students begin their studies in the fall semester. The program takes two years and summer school attendance is required between the first and second years. Credit may be allowed for as many as six hours of graduate work transferred from another institution at the discretion of the director.

Continuation in the program and admission to candidacy is dependent on academic performance and personal and professional development. In addition to maintaining an average of B or better in academic courses, the counseling department requires students to make a grade of B or better in each prerequisite counseling skills and clinical course in order to enroll in the next course. In the event a student makes a grade of C or lower in one of the courses listed, that course must be repeated. If a second grade of C or lower is made in the same course, the student is recommended for dismissal from the program. The progression of counseling skills and clinical courses is as follows: CNS 737, 738, 744, and 745.

Graduates are eligible to sit for the National Certified Counselor examination. Those who complete the school counseling program are eligible to apply for licensure with the public schools of North Carolina.

Requirements for the Master of Arts in Education Degree

Graduate work in the Department of Education is offered leading to the master of arts in education degree. Full time teacher education students complete the program in one academic year if they enter during the first summer term. Students enrolled on a part-time basis may require three years or longer to complete the degree. The master of arts in education degree is awarded to candidates who successfully complete the following requirements within six calendar years of the date of initial enrollment in the Graduate School:

Thirty-three semester hours of approved coursework in teacher education with an overall average grade of at least a B on all courses attempted. The course requirements must be completed in courses numbered 600 or above, with at least half of the total number of required hours in course numbered 700 or above.

Research competence in Teacher Education includes a set of three courses that culminate in a research study.

In addition to qualifying for admission to the Graduate School, candidates for the master of arts in education degree seeking a North Carolina Class G Teacher’s License must possess a North Carolina Class A Teacher’s License or its equivalent. Master Teacher students are not required to hold a teacher’s license to enter the program.

Requirements for the Master of Arts in Liberal Studies Degree

The MALS degree is awarded to candidates who complete twenty-seven hours of faculty-approved coursework with an average grade of B or above on all courses attempted and an acceptable thesis/project for which three hours of credit toward the thirty required for graduation are awarded. A minimum of twelve of the twenty-seven hours of coursework must be chosen
from the interdisciplinary courses particularly designed for the liberal studies program; a student may take all nine required courses from these specially designed offerings. Directed study courses, MLS 693 and MLS 694, do not count toward the requirement of four liberal studies courses. A maximum of five courses may be chosen from 600- and 700-level departmental courses that carry three hours of graduate credit. No more than four 600-level courses may count toward the degree.

A student may take six years to complete the master of arts in liberal studies degree. There is no residence requirement. A student may transfer a maximum of six semester hours from another liberal studies program or from an appropriate graduate program at the discretion of the director.

The liberal studies thesis project may be a traditional research paper, or a creative work; or it may take another form approved by the MALS Committee. The thesis committee should consist of three graduate faculty members (including the advisor). If a student wishes to include a faculty member who is currently not on the graduate faculty, the student’s advisor should petition the dean of the Graduate School for temporary appointment to the graduate faculty. Like other graduate students, liberal studies students make an oral presentation and defense of their completed thesis or project.

REQUIREMENTS FOR THE MASTER OF SCIENCE DEGREE

The master of science degree is offered on the Reynolda campus in biology, chemistry, computer science, health and exercise science, and physics. On the Bowman Gray campus, it is offered in biomedical engineering, comparative medicine, health sciences research, and molecular medicine.

Residence Requirement. In general, a minimum of twelve months of full-time work or its equivalent in residence is required for the master’s degree. For students who have already completed part of their graduate work, appropriate adjustment of the residence requirement can be made by the Graduate Council. The total allowable time for completion of the degree must not exceed six years.

Course Requirements. A master of science degree candidate must have a minimum of thirty semester hours of graduate credit. This minimum requirement can include no more than six hours of research. Sixteen hours of lectures, conferences, or examinations, or thirty-two hours of laboratory work are equivalent to one semester hour of credit.

Students desiring to transfer from another graduate school are not allowed more than six semester hours of credit for previous coursework.

The course of study consisting of classes, seminars, and research is compiled by a group including the student, the student’s advisor, and the chair of the department of the major field of interest. It is recommended that, when possible, such programs include courses in fields other than that of major interest. At least twelve semester hours must consist of graduate courses exclusive of courses included in the medical curriculum or 600-level courses on the Reynolda campus.

Thesis Requirement. If a thesis is required, it embodies the results of the student’s research. A final copy of the thesis must be submitted by the candidate to the dean of the Graduate School at least four weeks before the proposed date of the final examination and distributed to the examining committee at least three weeks before the final examination. The committee is polled by the chair of the examining committee at least ten days before the proposed date of the examination to determine the acceptability of the thesis. A minimum of five copies must be printed. Three copies become the property of the University. An abstract of approximately 200 words is also required.

Foreign Language or Special Skills Requirement. Some departments may require students to demonstrate either a reading knowledge of an appropriate foreign language, or
competence in a special skill such as statistics or computer programming. See each department’s statement to see if there is such a requirement and how it may be satisfied.

Ethics in Science Requirement for Biomedical Sciences (Bowman Gray Campus). The successful completion of a program in scientific ethics is required prior to admission to degree candidacy. This requirement may be fulfilled by participating in the one-week Ethics in Science program offered by the Graduate School or by satisfactory completion of one of several approved departmental electives that incorporate extensive discussion of scientific ethics. The Graduate School non-credit program is offered at the outset of each fall semester, and participation in the program is noted on the official transcript. A list of approved departmental electives may be obtained from the Graduate School. MS students in other disciplines have the option of participating in this program.

Admission to Degree Candidacy. A student is admitted to degree candidacy by the dean of the Graduate School after recommendation by the major department. The student must have met satisfactorily any foreign language, special skills, or ethics requirement and is expected to complete the master’s degree requirements by one additional semester’s work.

Final Examination. The examining committee for the thesis shall consist of at least three members of the graduate faculty, including the advisor. The committee shall be appointed by the dean of the Graduate School and may include one member from outside the student’s department or program who represents the Graduate Council and who serves as chair of the committee. With the approval of his or her advisor, a student may recommend an external member to serve on the examining committee. The thesis advisor must justify the participation of an external expert who is not a member of the graduate faculty on the basis of research, publications and/or professional activities. If the external expert is to be a voting and signing member of the examining committee, the advisor must communicate to the dean of the Graduate School, in writing, the qualifications of the external expert. The examination covers the thesis and knowledge in related areas and is conducted at least ten days prior to graduation. A student may be reexamined only once.

Requirements for the Master of Science in Accountancy Degree

The master of science in accountancy degree is offered through the Wayne Calloway School of Business and Accountancy. All students participate in intensive course and seminar work preparatory to careers in auditing, financial accounting, managerial accounting, taxation, information systems, and financial management.

Residence Requirement. A minimum of one academic year of full-time work in residence is required for the master of science in accountancy degree. In practice, most students require three semesters to complete the degree. In addition, one summer session may be required, depending on an individual’s academic background.

Course Requirements. Students in the master of science in accountancy program are required to complete a minimum of thirty semester hours of graduate credit. Only two 600 level courses may be taken for graduate credit. All other courses must be numbered 700 or above. For information on specific course requirements and sequencing, contact the Director of the Graduate Program in Accountancy at the Wayne Calloway School of Business and Accountancy.

Degree Candidacy. A student is admitted to degree candidacy by the dean of the Graduate School after recommendation by the dean of the Wayne Calloway School of Business and Accountancy.
Requirements for the Doctor of Philosophy Degree

Programs of study leading to the doctor of philosophy degree are offered in biochemistry and molecular biology, biology, biomedical engineering, cancer biology, chemistry, microbiology and immunology, molecular and cellular pathobiology, molecular genetics, molecular medicine, neurobiology and anatomy, neuroscience, physics, and physiology and pharmacology.

Residence Requirement. A minimum of three years of full-time study, of which at least two must be in full-time residence at the University. The total allowable time for completion of the degree must not exceed seven years.

Course Requirements and Advisory Committee. Specific course requirements are not prescribed. Coursework is arranged by the student’s advisory committee with the approval of the departmental or program graduate committee to provide mastery of appropriate fields of concentration. The advisory committee is appointed by the chair of the department or the program director and consists of the student’s advisor and two other members of the department or program. Teaching experience during the period of study is encouraged.

Foreign Language or Special Skills Requirement. Some departments may require students to demonstrate either a reading knowledge of one or more appropriate foreign languages, or competence in one or more special skills such as statistics or computer programming and operation. See each department’s statement to see if there is such a requirement and how it may be satisfied.

Ethics in Science Requirement for Biomedical Sciences (Bowman Gray Campus). The successful completion of a program in scientific ethics is required prior to the preliminary examination. This requirement may be fulfilled by participating in the one-week Ethics in Science program offered by the Graduate School or by satisfactory completion of one of several approved departmental electives that incorporate extensive discussion of scientific ethics. The Graduate School non-credit program is offered at the outset of each fall semester, and participation in the program is noted on the official transcript. A list of approved departmental electives may be obtained from the Graduate School. PhD students in other disciplines have the option of participating in this program.

Preliminary Examination. This examination is conducted by the major department. The examining committee selected by the department includes at least three members, one of whom represents a related concentration area. A single written examination or a series of written examinations should cover all areas of concentration and collateral studies. There may also be an oral examination in which any faculty member invited by the examining committee may participate. The examining committee passes or fails the student. In case of failure, the committee can recommend that the candidate be dropped or that reexamination be allowed no earlier than six months from the date of the first examination. A student may be reexamined only once. The preliminary examination is normally given near the end of the student’s second year of graduate study and must be passed at least twelve months prior to the date of the awarding of the degree.

Admission to Degree Candidacy. A student is admitted to degree candidacy by the dean of the Graduate School after recommendation by the chair of the major department or program director. Each candidate must have passed the preliminary examination and must have satisfied any foreign language or special skills requirement.

Dissertation. Under the supervision of an advisory committee, the candidate prepares a dissertation embodying the results of investigative efforts in the field of concentration. A final copy of the dissertation must be submitted by the candidate to the dean of...
the Graduate School at least four weeks prior to the proposed date of the final examination and copies distributed to the examining committee at least three weeks before the final examination. The committee is polled by the chair of the examining committee at least ten days before the proposed date of the examination to determine the acceptability of the dissertation. Programs announcing the date of the examination should not be distributed by the candidate until it is determined by the chair of the examining committee that the dissertation is defensible and that the examination will take place as scheduled. A minimum of five copies of the dissertation must be printed. Three copies become the property of the University.

At the time the dissertation is submitted, an abstract of 350 words or less must be submitted for publication in Dissertation Abstracts International. A nonrefundable dissertation fee of $55 covers the cost of this service. Other agencies of publication are encouraged, but such publication does not remove the requirement for submission of the abstract to Dissertation Abstracts International.

Final Examination. The examining committee for the dissertation appointed by the dean of the Graduate School consists of at least the following five members of the graduate faculty: the chair of the major department or a faculty member chosen by the chair, the student’s advisor, another member of the major department, a representative from a related area from within or outside the department and a member from outside the major department who represents the Graduate Council and who serves as chair of the committee. With the approval of his or her advisor, a student may recommend a faculty member from outside the department or program to serve on the examining committee. The dissertation advisor must justify the participation of external experts who are not members of the graduate faculty on the basis of research, publications and/or professional activities. If the external expert is to be a voting and signing member of the examining committee, the advisor must communicate to the dean of the Graduate School, in writing, the qualifications of the external expert. Other faculty members may attend the final examination and participate in the questioning. The examination covering the student’s major field of concentration and the dissertation is held no later than ten days before graduation.

Two weeks prior to the final examination, the candidate must have prepared copies of his or her doctoral program. A distribution list for the programs is available in the appropriate graduate office.

After the examination of the degree candidate, the chair shall ask each of the members of the examining committee whether the candidate has passed unconditionally, passed upon rectifying deficiencies, or failed.

Unconditional Pass. If all committee members agree that the student has passed unconditionally, there is consensus to pass the examination. The committee members shall sign the title sheet and the student shall be recommended for award of the degree.

Pass Upon Rectifying Deficiencies. If reservations are expressed by committee members, the chair of the committee shall ensure that the reservations are communicated to the student and the dean of the Graduate School. The student and the advisor are jointly responsible for ensuring that the dissertation is modified to meet the committee’s reservations. When the dissertation has been modified, the student passes the examination. The committee members shall sign the title sheet, and the student shall be recommended for award of the degree.

Fail. If, in the opinion of more than one member of the thesis or dissertation committee, the student has failed the examination, there is no consensus to pass. The chair of the committee shall advise the student that the dissertation fails to meet the requirements of the Graduate School. The chair shall ensure that the student knows the reason(s) for failure. If the student resubmits or submits a new dissertation for consideration by the Graduate School,
at least three members for the dissertation shall be drawn from the original committee. If the modified or new dissertation fails to meet the requirements of the Graduate School, the student shall be dismissed.

THE MD/PHD DEGREE PROGRAM

In the past, the clinician scientist has provided an invaluable perspective for research related to human health and disease. The clinician approaches biomedical problems with a different viewpoint from most researchers trained in classical PhD programs. The special value of this perspective is supported by the fact that, during the past decade, 62 percent of Nobel prizes in medicine and physiology were awarded to the MD or MD/PhD researchers. However, MDs, trained even in the most prestigious institutions, rarely have the depth of research training provided in the standard PhD academic program. In recent years the increasing pace of research, the need for knowledge of specific techniques, and the competition for research funds have made it progressively more difficult for MD clinicians to succeed in a research-intensive career.

The MD/PhD program is a combined effort of the School of Medicine and the Graduate School of Wake Forest University. In this integrated program, neither the MD nor the PhD degree is compromised. The student gains the full perspective for identification and analysis of problems related to human health and also gains rigorous training in a basic discipline, which provides the depth of knowledge of scientific logic and techniques to provide for an effective, exciting, and successful career in medical research.

The program seeks outstanding students who have already shown aptitude and enthusiasm for research.

Structure of the Program

The duration of the program typically is seven years.

During the summer before entry into medical school, beginning early June, the students attend an orientation program to introduce faculty and available research opportunities. An eight-week research rotation is conducted with a selected member of the participating graduate faculty. This (and subsequent, if needed) research rotation familiarizes the student with specific faculty and their fields of expertise; usually one of these faculty are chosen as the student’s graduate (PhD) advisor.

The first two academic years are spent as a medical student. Phase I (7 months) introduces core biochemical knowledge, including development and structure of the human body (gross, microscopic, embryological, and radiological anatomy) and basic cellular functions (biochemistry, molecular biology and genetics, immunology, introduction to pathology). Medicine as a profession, clinical decision making, and epidemiology extend between both Phases I and II. Phase II (Months 8-20) includes courses in systems pathophysiology (physiology, pharmacology, microbiology and pathology), and a two-month period for a second rotation in a lab of the selected graduate program in the summer after the first year.

During these years, for most of the graduate programs, the student attends a graduate seminar course which meets once a week and provides continuing in-depth introduction to the chosen graduate discipline, in addition to social and intellectual contact with the other graduate students and faculty.

If possible, the student chooses a graduate advisor by the end of Phase II. If necessary, the summer after Phase II may be used for another laboratory rotation, prior to choosing an advisor.

The third year is spent taking advanced basic science courses and conducting research. The specific courses to be taken depend on the graduate program.

The duration of the dissertation research may vary but typically is completed in years three-to-five and, if needed, a portion of year six. The PhD dissertation is completed and defended prior to returning to clinical studies.

During years six and seven, the student completes eighteen months of required
clinical rotations (Phase III of the clinical curriculum) which include internal medicine, surgery, pediatrics, obstetrics, women’s health, neurology, psychiatry, radiology, anesthesiology, family and community medicine, and emergency medicine. Four months of elective time are spent in other clinical experiences or may be used (during the fall of year six) for completion of graduate studies. This part of the schedule is tailored to the individual student with the approval of the graduate advisor, MD/PhD program director, and the associate deans for medical education and student services.

The PhD degree is conferred in the semester in which all requirements are met. The MD degree shall be awarded upon completion of the program.

Graduate Programs
The graduate programs participating in the MD/PhD program are:
- Biochemistry and Molecular Biology
- Biology
- Biomedical Engineering
- Cancer Biology
- Chemistry
- Microbiology and Immunology
- Molecular and Cellular Pathobiology
- Molecular Medicine
- Molecular Genetics
- Neurobiology and Anatomy
- Neuroscience
- Physics
- Physiology and Pharmacology

Mechanism of Application
Both the School of Medicine and the Graduate School evaluate the applicant’s credentials. The MCAT is the required standardized test for all applicants.

Initial application is through the American Medical College Application Service (AMCAS). When the School of Medicine receives AMCAS applications, students are sent supplemental forms for application to the School of Medicine. The applicant should indicate interest in the combined MD/PhD program on the supplemental application. The School of Medicine supplemental packet requests an evaluation by the applicant’s Premedical Advisory Committee. For the MD/PhD Program, the applicant should also include letters of evaluation specifically addressing his or her research experience and abilities.

This is a highly competitive program. In addition to outstanding grades and MCAT scores, the applicant should provide evidence of enthusiasm and aptitude for research, with prior research experience beyond that of college courses. This is an important factor in evaluation of the application.

After the supplemental application packet, MCAT scores, and letter(s) of evaluation are received, the completed application is reviewed by the committees on admissions of the MD/PhD Program, the Medical School, and the Graduate School. A small percentage of applicants are then asked to visit the University for interviews from October through March.

Funding Opportunities for MD/PhD Students
During the graduate study years, all MD/PhD students receive a stipend and tuition scholarship. There are a limited number of merit awards for the medical school years, which include both stipend and tuition scholarship.

For more information, contact:
David A. Bass, MD, DPh
Director, MD/PhD Graduate Program
Wake Forest University School of Medicine
Medical Center Boulevard
Winston-Salem, NC 27157-1054
Phone: (336) 716-2697
E-mail: dbass@wfubmc.edu
THE PHD/MB A DEGREE PROGRAM

There is a growing realization that graduate education must adapt to new economic and societal realities. With a significant proportion of new PhDs going to work in the private sector, graduate education should impart a broader range of skills to prepare students for a changing employment climate. At the same time, the PhD should retain the rigor of an original research experience that makes it a world model. The Wake Forest University Graduate School of Arts and Sciences, in conjunction with the Babcock Graduate School of Management, has initiated an innovative course of study leading to the PhD/MBA.

In addition to intensive doctoral training, the PhD/MBA program incorporates a core knowledge of business and managerial skills to provide the student with a marketable, competitive advantage, whether the student finds employment in industry or academia. Graduates choosing to pursue a traditional tenure-track faculty position will have the managerial and business training to initiate and operate their own research laboratories, and to interface more effectively with the private sector. Graduates choosing a non-traditional career path will be prepared to exercise their research training in management positions in the pharmaceutical industry, private foundations, government agencies, or university research and technology transfer offices.

Structure of the Program

The program is a synthesis of curricula from the Graduate School and the Evening MBA Program of the Babcock School, with specialized coursework and opportunities for industrial and business internships. The joint program is open to all PhD-granting programs across all Wake Forest campuses. It has taken students from four to six years to complete the joint program, depending on the nature of the graduate research undertaken in the home program. The first year of the curriculum provides students with a core base of knowledge in biomedical sciences and includes training in the core competencies of the home graduate program. At the same time students begin to be exposed to issues related to research and design, career development, and journal clubs. Laboratory rotations usually occur in this first year. The students begin their dissertation research during the second year. At the end of the second year and before beginning MBA coursework, the student must take and pass a qualifying exam that will admit him or her to candidacy for the PhD.

A student enrolling in the PhD/MBA program will have 5-6 semesters of evening MBA courses added to his or her graduate degree requirements. Opportunities for industrial projects and internships are possible after ascent to PhD candidacy and during the MBA coursework phase. The PhD and MBA degrees are awarded simultaneously at the completion of all requirements for both degrees.

Application Process

Admissions are administered through the Graduate School of Arts and Sciences. Students wishing to enroll in the program must apply to both programs and meet the respective admissions requirements of the Graduate School of Arts and Sciences and the Babcock Graduate School of Management. Admission to the MBA portion of the program can occur separately after gaining admission to the home graduate program and after securing appropriate release from the home program for participation in the joint program. In addition to the general requirements of the Graduate School of Arts and Sciences, the Babcock Graduate School of Management requires completion of the GMAT (General Management Aptitude Test). Prospective students should also submit a one-page statement of interest indicating future plans for use of the joint degree, official transcripts from each college or university attended, and three completed recommendation forms.

Before admission to the program, the applicants complete a personal interview with individuals from the respective PhD
program, the Babcock School, and the PhD/MBA Program Committee. After the interview phase, the top applicants may be offered admission to the joint program.

For more information, contact:
Dwayne W. Godwin, PhD
PhD/MBA Program Director
Department of Neurobiology and Anatomy
Wake Forest University School of Medicine
Medical Center Boulevard
Winston-Salem, NC 27157

Phone: (336) 716-9437
Fax: (336) 716-4534
Email: dgodwin@wfubmc.edu
Courses of Instruction

Semester hours of credit are shown by numerals immediately after the course title—for example, (3) or (3, 3). Some laboratory courses have numerals after the course descriptions showing hours of recitation and laboratory per week—for example, (2-4). The symbols P— and C— followed by course numbers or titles are used to show prerequisites and corequisites in the department. POI indicates permission of instructor. Many entries show the name of the professor who teaches the course.

Because graduate study occurs at a level of complexity and specialization exceeding that of undergraduate education, the work required of graduate students in any course in which instruction is combined with undergraduate students will reflect this difference.

Accountancy

Reynolda Campus

Director of Graduate Program in Accountancy Terry A. Baker
Hylton Professor of Accountancy Lee G. Knight
Wayne Calloway Professor of Accountancy Dale R. Martin
Wayne Calloway Professor of Taxation Ralph B. Tower
Professors S. Douglas Beets, Jack E. Wilkerson Jr.
Professor Emeritus Thomas C. Taylor
PricewaterhouseCoopers Faculty Fellow and Associate Professor George R. Aldhizer
PricewaterhouseCoopers Professor for Academic Excellence and Associate Professor Terry Baker
Merrill Lynch Associate Professor of Accountancy Jonathan E. Duchac
PricewaterhouseCoopers Faculty Fellow and Associate Professor Yvonne Hinson
Benson-Pruitt Associate Professor of Business G. Page West
Associate Professor Paul E. Juras

The Wayne Calloway School of Business and Accountancy offers a program leading to the master of science degree in accountancy. The MSA program is designed to prepare students for careers in professional accounting and financial management and requires the completion of thirty hours of graduate credit. Students must have a passing grade in all course and seminar work and a B average or higher for graduation.
Students in the MSA program fall into two broad categories:

- **Students who already have an undergraduate degree and are earning credit only toward the MSA degree.**
- **Students who are earning credit toward both a Wake Forest undergraduate degree and the MSA degree.**

Note for students earning credit toward a Wake Forest undergraduate degree—Changes to the required courses for the undergraduate and graduate degrees in accountancy have been approved and will be fully implemented by the 2007-08 academic year. Wake Forest undergraduates are advised to obtain information about these changes through the Calloway School Web site or from the director of graduate studies for accountancy.

For alleged academic and non-academic infractions involving students who are earning credit only toward the MSA degree, jurisdiction lies with the Graduate School of Arts and Sciences rather than the Honor System maintained and overseen by the Judicial Council of the undergraduate schools.

For students who are earning credit toward both a Wake Forest undergraduate degree and the MSA degree, jurisdiction lies with the Honor System through a student’s fourth year of study and with the Graduate School of Arts and Sciences during the fifth year of study.

Bus 633. Investment Analysis. (3) Equity market analysis course where students are exposed to portfolio development and analysis, valuation of equity securities, selection of equity securities for portfolio construction.

Bus 634. Multinational Financial Management. (3) Analysis of the international aspects of managerial finance. Emphasis upon institutional and environmental factors influencing foreign exchange market, capital acquisition and allocation.

Bus 635. Fixed-Income Securities and Financial Institutions. (3) A thorough examination of fixed-income securities, their sensitivity to changes in interest rates, and the impact of imbedded options and credit risk. This course also explores the role of financial intermediaries in a free market economy and the functions of financial institutions within money and capital markets. Special topics may include interest rate risk management technique, fixed-income portfolio management, and hedging financial risks.

Bus 636. Financial Derivatives. (3) Futures, options, and swaps are the three most important types of financial derivatives, and they are linked by a common pricing framework. This course emphasizes the use of these derivatives in risk management but includes speculative strategies that can be implemented with derivatives.

Bus 638. Financial Statement Analysis. (1.5) A study of the techniques used to analyze and interpret the information in corporate financial statements. Emphasis is placed on 1) accounting methods used in the preparation of financial statements, 2) implications of management’s accounting choices for evaluation of corporate performance by creditors and investors, and 3) linkages among financial statement items.

651. Accounting Information Systems. (3) A study of accounting system data security, fiduciary and reliability risks and mitigating internal controls. A special emphasis upon the revenue and expenditure cycles and computer assisted audit techniques. P—Admission to MSA program.

652. Introduction to Auditing. (4) An examination of basic auditing concepts and practices, and the auditor’s professional responsibilities. Emphasis is placed upon auditing standards and the
auditing procedures commonly used in public accounting. P or C—Accounting 651. P—Admission to MSA program.

677, 678. Individualized Reading and Research. (Credit to be arranged) Directed study in specialized areas of accountancy. P—Admission to MSA program.

710. Graduate Colloquium. (3) A seminar course that reflects on the internship experience and examines current issues facing the accountancy profession. This course allows students to share and discuss issues and problems faced during the internship and utilizes speakers and readings to stimulate discussion. P—Admission to MSA program.

714. Corporate Financial Reporting. (3) An examination of a variety of financial reporting topics, including revenue recognition, income taxes, accounting changes and error analysis, interim and segment reporting, business combinations, foreign currency transactions and translations, and accounting for partnerships. P—Admission to MSA program.

721. Strategic Cost Management. (3) This course looks at the role of accounting in supporting strategic and operational decisions. The content focuses on, but is not limited to, performance measurement, planning, and control, with examples drawn from various industries. Throughout the course, attention is given to contemporary and behavioral issues associated with various topics.

730. Tax Research Methods. (1.5) A survey of the methods and resources used by tax practitioners in researching compliance and planning issues.

731. Federal Taxation of Corporations, Estates, and Trusts. (3) A review of federal taxation principles associated with the organization, operation, and dissolution of corporate partnership and tax-exempt organizations. Introduction to federal estate and gift taxes and to income taxation of trusts and estates. P—Admission to MSA program or POI.

732. Selected Topics in Taxation. (3) A review of advanced tax topics including consolidated tax returns, international transactions, multistate corporate taxation, and family tax planning. P—Accounting 731 or POI.

733. Tax Policy and Planning. (1.5) An examination of current tax policy issues and the effects of taxes on investment alternatives.

734. Estate and Gift Taxation. (1.5) A review of taxation of gratuitous transfers under the federal estate and gift tax code and under state inheritance gift tax law. Analysis of tax planning and compliance issues.

750. Forensic Accounting. (1.5) Overview of fraud prevention and detection techniques, and an in-depth discussion of how to assist an audit committee and legal counsel with fraud investigations. Topics examined include investigating theft and concealment, conversion investigation methods, inquiry methods, and fraud reports.

754. Advanced Auditing and Assurance Services. (3) A study of current issues, practices, and techniques related to auditing and assurance services. Students utilize available research materials, databases, personal auditing experience, and practitioner sources to address relevant issues. Emphasis is placed upon analysis, teamwork, writing, and presentation skills. P—Admission to MSA program and Accounting 652, or POI.

Bus 762. Business Law for Accountants. (3) An introduction to law and a study of substantive law applicable to business transactions, including contracts, agency, property, the Uniform Commercial Code, and business organizations, with emphasis on areas with auditing and accounting implications. P—Admission to MSA program.
Bus 763. Enterprise Law. (2) The course examines the substantive law related to business organizations, property, and the governmental regulation of business functions. Specifically, topics include the law of corporations, partnerships, and limited liability companies with emphasis on the formation and liability associated with each business form. The law relating to intellectual property and real property is examined, focusing on ownership and transfer rights. This course also includes an introduction to securities regulation, antitrust law, labor law, and environmental law. P—Business 762 or POI.

790. Current Topics Seminar. (3)

792. Accounting in Emerging Economies: Transitioning to a Market Economy. (3) This course examines the challenges and problems faced by former socialist countries such as Czech Republic, Hungary, Poland, and Russia, in the transition process towards democracy and market economies. In this context, the process of accounting reform as a crucial and integral part of this transformation process is explored. Due to the complexity of these transition problems, the course is interdisciplinary in nature. P—Admission to MSA program and POI.

Biochemistry and Molecular Biology

Bowman Gray Campus

BIOCHEMISTRY

Chair Douglas S. Lyles

Professors Donald W. Bowden, H. Alexander Claiborne, Carol C. Cunningham, Larry W. Daniel, Mark O. Lively, Douglas S. Lyles, Linda C. McPhail, Lawrence L. Rudel, Peter B. Smith, Michael J. Thomas, Alan J. Townsend, Mark Welker

Research Professor Robert L. Wykle

Associate Professors Roy R. Hantgan, Charles S. Morrow, Fred W. Perrino, Leslie Poole, Suzy V. Torti

Assistant Professors Thomas Hollis, David Horita, W. Todd Lowther

Research Assistant Professors T. Conn Mallett, Derek Parsonage, Andrew J. Sweatt

Instructor Susan Sergeant

Associate Faculty David A. Bass, Gregory L. Kucera, John S. Parks, Gregory S. Shelness, Mary G. Sorci-Thomas, Reidar Wallin, Richard Weinberg

The graduate training program in Biochemistry and Molecular Biology of the Department of Biochemistry is designed to prepare students for careers of investigation and teaching in biochemistry, molecular biology, and in related sciences that involve biochemical, structural and molecular approaches and techniques. Although the programs of study are individually planned, all students are expected to possess competence in certain basic areas of biochemistry and related sciences. Programs leading to the PhD degree in Biochemistry and Molecular Biology are offered.

To provide a comprehensive background for advanced work, the initial phase of the student’s program generally includes the courses Biochemistry 1 and 2, Intracellular Signaling, Molecular Biology, Biochemical Techniques, Scientific Communication, Introduction to Biochemical Research, and any courses needed to correct areas of deficiency. Specialization and depth are provided through pertinent advanced courses in biochemistry and molecular biology,
including sections of special topics in biochemistry and selected courses in other departments. The student also participates in the department’s program of research seminars.

Thesis research under the supervision of a faculty member may be pursued in various areas of biochemistry, including enzymology, NMR and x-ray structure determination of macromolecules, membrane structure and function in excitable tissues, relation of lipid and protein metabolism and of protein-lipid association to membrane structure and function, biological oxidations and bioenergetics, molecular genetics and nucleic acid function, biophysics, biochemical pharmacology of anticancer agents, leukocyte metabolism and function, signal transductional mechanisms in normal and cancerous cells, and molecular mechanisms of blood coagulation. The department has specialized equipment and facilities to support training and investigation in these areas.

The biochemistry program participates in the Interdisciplinary Graduate Track in Structural and Computational Biophysics. For more information, refer to the pages in this bulletin regarding the program.

The graduate program was begun in 1941, and the PhD degree has been offered since 1962.

700, 701. Scientific Communication. (1, 1) Instruction and practice in oral and written scientific communication. Meets weekly. Staff

702, 703. Introduction to Biochemical Research. (1-5) Conferences on biochemical literature, the planning and execution of research, and the interpretation and presentation of experimental results. To put these principles into practice, individualized laboratory projects are carried out under the supervision of staff members. Staff

704. Preparatory Biochemistry. (3) Conducted as a combination of lectures, case studies, reading assignments, course notes, and group conferences. The sequence of topics is: a. protein structure, b. enzyme mechanisms, c. bioenergetics, d. signal transduction, e. intermediary metabolism and f. interorgan metabolism. The principles of each topic are discussed in relation to clinical disease entities, e.g. protein structure: hemoglobin/sickle cell anemia/sickle cell hemoglobin/sickle cell disease due to abnormal hemoglobin structure. Smith

705. Biochemistry I. (4) Examination of the basic physical and chemical principles underlying protein structure, protein assembly and interactions, enzyme function, and production and storage of metabolic energy within cells. Contemporary concepts concerning the organization and cellular regulation of metabolic pathways are also presented. P—General and organic chemistry, general biology, or POI. Hantgan

706. Intracellular Signaling. (2) Advanced study of the biochemical mechanisms involved in intracellular signaling of normal and malignant cells, including 1) growth factor and G protein-coupled receptors 2) second messengers, 3) protein kinase cascades, 4) gene regulation, and 5) oncogenes. Lectures and discussions provide in-depth coverage of each topic with emphasis on recent advances and current literature. P—705. McPhail, Staff

707. Biochemical Techniques. (2) Theory and application of selected important biochemical laboratory techniques. Lectures and problems. P—or C—705, or equivalent exposure to biochemistry. Poole, Staff

708. Biochemistry II. (4) In-depth study of macromolecular assembly and interactions, as well as the application of structural biology and proteomics technology. Topics include molecular graphics, x-ray diffraction, nuclear magnetic resonance, hydrodynamic techniques, optical spectroscopy, and mass spectrometry. P—BICM 705.
714. Instrumental Techniques. (3) This course presents theory and technical aspects of instrumentation currently employed in the biological sciences. Experience is provided on a variety of instruments including high performance liquid chromatographs; gas chromatographs; gas chromatograph/mass spectrometer; nuclear magnetic resonance spectrometer; electron paramagnetic resonance spectrometer; ultraviolet, visible, and infrared spectrophotometers; spectrofluorometers; and cell sorter/cytofluorograph. P—Chemistry through physical chemistry and two semesters of physics or POI. It is highly recommended but not required that the student have a foundation in electronics equivalent to Physiology 791. Offered in odd-numbered years. Thomas, Staff

715, 716. Special Topics in Biochemistry. (1-9) An advanced conference course that considers various areas of current interest or rapid development. Topics currently covered are (a) biochemistry of excitable tissue, 1 hour (Smith); (b) membrane biology, 1 hour (Staff); (c) biochemical genetics, 1 hour (Staff); (d) bioactive lipids, 1 hour (Daniel, Wykle); (e) oxidative mechanisms, 1 hour (Claiborne); (f) bioenergetics, 1 hour (Cunningham) [(e) and (f) may be taken together]; (g) experimental cancer chemotherapy, 1 hour (Townsend); (h) mechanistic enzymology and kinetics, 1 hour (Poole, Parsonage). Additional topics will be developed depending on the interests of students and staff. P—705 or equivalent.

719, 720. Research. The department offers opportunities for investigation in a wide variety of biochemical subjects under the guidance of staff members. Staff

731. Molecular Biology. (1, 3) A survey of the fundamentals of molecular biology. Included are fundamentals of microbial genetics and discussions of nucleic acid structure and mutagenesis, DNA replication and recombination, transcription and control of gene expression and protein translation (1 hr). The introduction is followed by an advanced treatment of these topics, and discussions of mammalian genetics and immunogenetics with emphasis on current trends in research. P or C—Biochemistry 705. Perrino, Staff

732. Molecular Biology. (3) Detailed lectures and discussion surveying the analysis of cellular processes, oncology, atherosclerosis, and development by the experimental approaches of molecular biology. Emphasis is on eukaryotic systems and review of pertinent research literature. P—Biochemistry 731. Shelness, Staff

734. Human Molecular Genetics. (2) A combined lecture/seminar course providing an overview of current theoretical and technical approaches for locating, identifying, and cloning human genes using molecular genetic methods. Emphasis will be placed on the search for genes that contribute to simple single-gene disorders and common complex diseases. Topics include genetic mapping in humans, construction of physical maps of chromosomes, identification of coding sequences and disease susceptibility genes, and functional analysis of gene products. P—Molecular Genetics/Biochemistry/Microbiology 731 or POI. Bowden
The Department of Biology offers programs of study leading to the MS and PhD degrees. For admission to graduate work, the department requires an undergraduate major in the biological sciences or the equivalent, plus at least four semesters of courses in the physical sciences. Any deficiencies in these areas must be removed prior to admission to candidacy for a graduate degree.

At the master’s level, the department emphasizes broad biological training rather than narrow specialization. Current research opportunities include physiological ecology, animal physiology, plant physiology, sensory biology, biomechanics, behavioral ecology, plant and animal systematics, immunology, plant and animal cell biology, developmental biology, microbiology, molecular and population genetics, biochemistry and molecular biology, evolution, parasitology, and population and community ecology. It should be noted that graduate students desiring to use work taken in biology for graduate teacher certification should consult the Department of Education before applying for candidacy.

At the doctoral level, few specific requirements are prescribed. Under the guidance of the student’s faculty adviser and advisory committee and with the approval of the departmental graduate committee, individual programs are designed for each student. As a supplement to the formal course work, the department has established a special tutorial program. This program brings to campus each year three outstanding biologists to direct and participate in a series of seminars and discussion sessions with doctoral candidates and selected MS students. The areas covered by the tutorial program vary from year to year.

Enrollment in the PhD program is open only to students whose interests are reflected by the areas of expertise represented by the faculty. Thus, prospective PhD students are encouraged to correspond with staff members whose areas of research interest seem compatible with their own. Additional information is available from the chair of the departmental graduate committee.

Graduate study often requires the use of special research tools and skills such as computer work or foreign languages. Candidates for the MS degree must demonstrate proficiency
with one such special skill; PhD candidates must be competent with two skills. The student’s advisory committee determines, in consultation with the student and with the approval of the departmental graduate committee, the specific areas and demonstrations of competence associated with these skills requirements. Specific course work in areas such as biometrics and electron microscopy may be used to satisfy a skill requirement, if approved by the advisory committee.

At least one year of teaching, e.g. as a teaching assistant, is required of all PhD students during their tenure.

In order to remain a bona fide graduate student in the department, the student must maintain an overall B average in all courses attempted. Any time this condition is not met the student will lose all financial support and must reapply for acceptance into the program.

Wake Forest is an institutional member of the Highlands Biological Station, which offers research facilities in a high mountain area rich in transitional flora and fauna. The department has a field station situated on Belews Lake, about twenty miles from the Reynolds campus. Additional opportunities for research are available at the Savannah River Ecology Laboratory.

Study leading to the MS degree was inaugurated in 1961. The PhD degree program began in September 1970. A departmental graduate committee consisting of five members of the biology department, four faculty and one graduate student, oversees all aspects of the graduate program from application review to acceptance to matriculation.

For Advanced Undergraduates and Graduate Students

601-605. Topics in Biology. (1-4) Seminar and/or lecture courses in selected topics, some involving laboratory instruction. Staff

607. Biophysics. (3) An introduction to the structure, dynamic behavior, and function of DNA and proteins, and a survey of membrane biophysics. The physical principles of structure determination by x-ray, NMR, and optical methods are emphasized. Kim-Shapiro

614. Evolution. (3) Analysis of the theories, evidences, and mechanisms of evolution. Eure

615. Population Genetics. (4) A study of the amount and distribution of genetic variation in populations of organisms, and of how processes such as mutation, recombination, and selection affect genetic variation. The lectures present both an introduction to theoretical studies and discussion of molecular and phenotypic variation in natural populations. Zeyl

620. Comparative Anatomy. (4) A study of the vertebrate body from an evolutionary, functional, and developmental perspective. Labs emphasize structure and function, primarily through the dissection of representative vertebrates. Ashley-Ross

621. Parasitology. (4) A survey of protozoan, helminth, and arthropod parasites from the standpoint of morphology, taxonomy, life histories, and host/parasite relationships. Esch, Eure

622. Biomechanics. (4) An analysis of the relationship between organismal form and function using principles from physics and engineering. Solid and fluid mechanics are employed to study design in living systems, especially vertebrates. Ashley-Ross

624. Hormones and Behavior. (3) Introduction to the hormonal regulation of behavior in a broad range of animals, including humans and invertebrates. Topics include reproductive behavior, parental behavior, social behavior, sex differences, aggressive behavior, stress, mood, and the regulations of molting in insects. Fahrbach
626. **Microbiology.** (4) The structure, function, and taxonomy of microorganisms with emphasis on bacteria. Covered special topics include microbial ecology, industrial microbiology, and medical microbiology. The lab emphasizes microbial diversity through characterizations of isolates from nature. *Curran*

631. **Invertebrates.** (4) Systematic study of invertebrates, with emphasis on functional morphology, behavior, ecology, and phylogeny. *Dimock*

633. **Vertebrates.** (4) Systematic study of vertebrates, with emphasis on evolution, physiology, behavior, and ecology. Laboratory devoted to systematic, field, and experimental studies. *Weigl*

635. **Insect Biology.** (4) A study of the diversity, structure, development, physiology, behavior, and ecology of insects. *Conner*

635S. **Insect Biology.** (4) A five-week course taught during the summer. A study of the diversity, structure, development, physiology, behavior, and ecology of one of the most diverse taxa on earth. Course location and field trip destinations to be announced each summer. P—POI. *Conner*

638. **Plant Systematics.** (4) A study of the diversity and evolution of flowering plants. Lectures emphasize the comparative study of selected plant families, their relationships, and the use of new information and techniques to enhance our understanding of plant evolution. Labs emphasize more practical aspects of plant systematics such as the use of identification keys, recognition of common local plants, molecular techniques, and basic phylogenetic analysis. *Kron*

639. **Principles of Biosystematics.** (4) An exploration of the current theoretical and practical approaches to the study of macroevolution in plants and animals. Topics include theory and methods of constructing evolutionary trees, sources of data, and cladistic biogeography. *Kron*

640. **Ecology.** (4) Interrelationships among living systems and their environments, structure and dynamics of major ecosystem types, contemporary problems in ecology. *Weigl*

641. **Marine Biology.** (4) An introduction to the physical, chemical, and biological parameters affecting the distribution of marine organisms. *Dimock*

642. **Aquatic Ecology.** (4) A course designed to cover the general principles and concepts of limnology and aquatic biology as they apply to lentic and lotic habitats. A major portion of the field studies centered at the Charles M. Allen Biological Station. *R. Browne, Esch*

643. **Tropical Ecology.** (3) An exploration of the ecology, biodiversity, history, and future of tropical ecosystems. Lectures emphasize ecological principles and rely heavily on the primary literature. *Silman*

644S. **Tropical Marine Ecology.** (4) An intensive field-oriented course focusing on tropical marine ecosystems and their biological communities. Emphasis is placed on biodiversity, the ecology of dominant taxa, the interaction between physical and biological processes, and the structure and function of representative communities. Includes 2.5 weeks at the Hofstra University Maine Laboratory, Jamaica. Offered during summer school only. (First term/Special term) *Dimock*

646. **Neurobiology.** (4) Introduction to the structure and function of the nervous system with emphasis on neurophysiology. The laboratory will emphasize traditional electrophysiological techniques with experiments from the cellular to the behavioral level. *Silver*

647. **Physiological Plant Ecology.** (3) A course designed to provide a fundamental understanding of how plants have adapted to the stresses of their habitats, particularly in harsh or extreme environments such as deserts, the alpine, the arctic tundra, and tropical rain forests. *Smith*
648. Physiological Plant Ecology. (4) A course designed to provide a fundamental understanding of how plants have adapted to the stresses of their habitats, particularly in harsh or extreme environments such as deserts, the alpine, the arctic tundra, and tropical rain forests. The laboratory will introduce students to a broad array of field instrumentation. Smith

649S. Tropical Biodiversity. (4) An intensive field course in tropical biodiversity. Students will travel to major tropical biomes, including deserts, glaciated peaks and rain forests. Lectures emphasize the basic ecological principles important in each ecosystem; laboratories consist of student-designed field projects. Course location varies yearly. Silman

651. Vertebrate Physiology. (4) A lecture and laboratory course that discusses and demonstrates the principles of bioelectricity and biomechanics. Regulatory principles and the physiology of the cardiovascular, respiratory, and renal systems of vertebrates are covered. Lane

652. Developmental Neuroscience. (4) This course focuses on the development of neural structures and the plasticity of the mature nervous system. Special attention is given to experimental model systems, particularly Drosophila melanogaster. The laboratory will feature molecular, immunocytochemical, and cell culture techniques for the study of neurons. Fahrbach

654. Endocrinology. (3) A lecture course that explores the evolution of hormones and endocrine glands, and the physiology of the main hormonal pathways of vertebrates. Lane

655. Avian Biology. (4) A lecture and laboratory course emphasizing ecological and evolutionary influences on the physiology, behavior, and population biology of birds. Includes taxonomy of the world’s major bird groups. Anderson

659. Genomics. (3) An introduction to the acquisition, analysis, and utility of DNA sequence information. Topics covered include structural, comparative, and functional genomics, genetic mapping, bioinformatics, and proteomics. Staff

660. Development. (4) A description of the major events and processes of animal development, with an analysis of the causal factors underlying them. Special attention is given to the embryonic development of vertebrates, but consideration is also given to other types of development and other organisms. Topics include fertilization, early development, growth and cell division, cell differentiation, the role of genes in development, cell interaction, morphogenesis, regeneration, birth defects, and cancer. C. Browne

661. Microbial Pathogenesis. (3) This course explores the molecular mechanisms by which microorganisms attack hosts, how hosts defend against pathogens, and how these interactions cause disease. Curran

662. Immunology. (3) A study of the components and protective mechanisms of the immune system. Kuhn

663. Sensory Biology. (3) A lecture course that examines a variety of sensory systems. The emphasis is on sensory physiology, although other aspects of sensory systems, e.g. molecular biology and anatomy, are also covered. Silver

664. Sensory Biology. (4) A lecture and laboratory course that examines a variety of sensory systems. The emphasis is on sensory physiology, although other aspects of sensory systems, e.g. molecular biology and anatomy, are also covered. In the laboratory, students learn several different procedures which they use to conduct assigned experiments. A final project is required in which students design and carry out their own experiments. Silver

665. Biology of the Cell. (4) A lecture and laboratory course on recent advances in cell biology. Lectures emphasize analysis and interpretation of experimental data in the primary literature,
focusing on topics such as the large scale architecture of the cell, targeting of macromolecules, cell-cell communication, cell signaling, and the control of cell division. The laboratory introduces basic techniques in cell biology and leads to an independent project. Tague

667. Virology. (3) A course designed to introduce students to viruses, viral/host interactions, pathogenicity, methods of control and their use in molecular biology, including gene therapy. Curran, Lord

668. The Cell Biological Basis of Disease. (3) This course examines some of the defects in basic cellular mechanisms that are responsible for many common and less common diseases. Special topics in cell biology are discussed, and students read original scientific papers correlating these topics with specific disease states. C. Browne

669. The Cell Biological Basis of Disease. (4) This course examines some of the defects in basic cellular mechanisms that are responsible for many diseases. The laboratory uses advanced microscopic and histological techniques to investigate basic properties of cells. C. Browne

670. Biochemistry: Macromolecules and Metabolism. (3) A lecture course introducing the principles of biochemistry, with an emphasis on the experimental approaches that elucidated these principles. Major topics include structure, function, and biosynthesis of biological molecules, analysis of enzyme function and activity, bioenergetics, and regulation of metabolic pathways. Muday

671. Biochemistry Macromolecules and Metabolism. (4) A lecture and laboratory course introducing the principles of biochemistry, with an emphasis on the experimental approaches that elucidated these principles. Major topics include structure, function, and biosynthesis of biological molecules, analysis of enzyme function and activity, bio-energetics, and regulation of metabolic pathways. The laboratory emphasizes approaches for isolation of proteins and enzymes. Muday

672. Molecular Biology. (4) An analysis of the molecular mechanisms by which stored information directs cellular development. Emphasis is placed on storage and transmission of genetic information, regulation of gene expression, and the role of these processes in development. The laboratory focuses on modern techniques of recombinant DNA analysis. Muday, Tague

677. Community Ecology. (4) An advanced ecology course covering mechanisms that determine the dynamics and distribution of plant and animal assemblages: life-history, competition, predation, geology, climate, soils, and history. Lectures focus on ecological principles and theory. Lab includes local field trips and discussion of primary literature. Several weekend field trips. Silman

680. Biostatistics. (3) An introduction to statistical methods used by biologists, including descriptive statistics, hypothesis testing, analysis of variance, and regression and correlation. R. Browne

681. Biostatistics Laboratory. (1) Application of computer-based statistical software. Optional laboratory available only to students who have taken or are currently enrolled in Biology 680. R. Browne

691, 692, 693, 694. Research in Biology. (1, 1, 1, 1) Independent library and laboratory investigation carried out under the supervision of a member of the staff. P—POI. Staff
For Graduate Students

701-708. **Topics in Biology.** (1-4) Seminar courses in selected topics, some involving laboratory instruction. At least one offered each semester. **Staff**

711, 712. **Directed Study in Biology.** (1, 1) Reading and/or laboratory problems carried out under and by permission of a faculty member. **Staff**

715. **Foundations of Physiology.** (1-4) A course covering classical and current topics and techniques in comparative physiology. Format varies from seminar to a full laboratory course. **Staff**

716. **Signal Transduction.** (2) This course focuses on the mechanisms of inter- and intra-cellular communication. Topics range from receptors to signaling molecules to physiological responses. The course is largely based on the primary literature and requires student presentation of primary research articles. C. Browne, Muday, Tague

717. **Developmental Mechanisms.** (2) A seminar course examining the molecular, biochemical, and cellular mechanisms of animal and/or plant development. Relevant topics selected from the current literature will be discussed in lecture and presentation formats. C. Browne, Tague, Muday

718. **Gene Expression.** (2) This graduate seminar covers gene expression in eukaryotic and prokaryotic systems. Topics range from transcription to translation to other aspects of gene regulation. Emphasis is on the experimental basis for understanding the mechanisms of gene expression. Students present, in seminar format, appropriate papers from literature. All students participate in discussion and evaluation of presentations. Tague, C. Browne, Curran, Muday

725. **Plant Genetics.** (1,2) A course covering various aspects of plant genetics in a seminar format. Topics range from classical Mendelian genetics to genomics and bioinformatics, depending on the interests of the students. Students present the results, conclusions, and significance of appropriate papers from the literature. All students participate in discussion and evaluation of presentations. Muday, Tague

726. **Plant Physiology.** (1, 2) A course covering various aspects of plant physiology and hormones in a seminar format. Topics range from auxin transport to properties of light within the leaf. Students will present the results, conclusions, and significance of appropriate papers from the literature. All students will participate in discussion and evaluation of presentations. Muday, Smith

727. **Plant Evolution.** (1,2) A course covering various aspects of plant evolution in a seminar format. Topics range from problems in phylogeny reconstruction and patterns of diversity to major evolutionary innovations in various plant groups. Students present the results, conclusions, and significance of appropriate papers from the literature. All students participate in discussion and evaluation of presentations. Kron, Silman

728. **Plant Ecology.** (1,2) A course covering various aspects of plant ecology in a seminar format. Topics vary depending on graduate student interest. Students present the results, conclusions, and significance of appropriate papers from the literature. All students participate in discussion and evaluation of presentations. Silman, Smith

730. **Invertebrate Zoology.** (4) Emphasis on the physiology and ecology of invertebrate animals. Dimock

736. **Bioacoustics.** (4) An analysis of the mechanisms of sound production, transmission, and reception and their relevance to animal orientation and communication. Conner
740. Physiological Ecology. (4) Introduction to evolutionary/ecological physiology, with emphasis on the interactions between organisms and major abiotic factors of the environment including, water balance—hydration, gaseous exchange—respiration, temperature tolerance—thermal physiology. Dimock

757. Techniques in Mathematical Biology. (3) This course seeks to give students a framework for understanding the use of mathematics in both biological theory and empirical research. Emphasis is on practical applications of mathematical techniques, and learning by doing. A central goal is to give students tools to use in their own research. Topics covered include continuous and discrete population models, matrix models, stochastic models, life-history theory, and fitting models for data. Mathematical skills are taught and refreshed, but knowledge of basic calculus is required. Silman, Anderson, Baxley

762. Immunology. (4) Humoral and cellular immune responses are examined to understand the basic immunobiology of vertebrates with special emphasis on cell-cell interactions and immunoregulation. Laboratory experiments introduce students to basic methods in immunological research. Kuhn

763. Cellular and Molecular Interactions Between Hosts and Parasites. (3) This course examines the responses of animal hosts in attempting to immunologically and non-immunologically reject/control both endo- and ecto-parasites and responses of these parasites to the host environment. The course consists of lectures and student presentations and requires a comprehensive review article by students. Kuhn

764. Sensory Biology. (4) A lecture and laboratory course involving a study of energy in the environment and how it is absorbed and transduced in sensory systems. Anatomical, physiological, biochemical, and biophysical approaches are integrated in the study of sensory mechanisms in plants and animals. A laboratory project implementing the scientific method and designed to produce new knowledge is required. Silver

775. Microscopy for the Biological Sciences. (4) An introduction to the various types of light, confocal, and electron microscopy. Students learn technical and theoretical aspects of microscopy, methods of sample preparation, digital image acquisition and analysis, and the preparation of publication quality images. The course emphasizes practical applications of microscopy, microscopy experimental design, and hands-on use of microscopes and digital imaging systems. Students are expected to design and conduct a microscopy project and present their results to the class. Additionally, students are expected to participate in class discussions regarding newly emerging microscopy techniques in various biological disciplines. McCauley

777. Biophysical Ecology. (4) A course designed to introduce students to the interactions of the organism with the physical environment. Sunlight, temperature, water availability and humidity, wind, and longwave radiation (greenhouse effect) strongly influence an organism’s growth and reproductive potential. Differences in heat and mass transfer to and from the organism, plus corresponding organism responses in structure, physiology, and behavior to changes in the local environment, are addressed. These same principles are also important to the design of energy-efficient homes (passive solar), clothing design (Gortex), outdoor survival and gardening, to name only a few of humankind’s everyday activities. Smith

778. Advanced Ecology. (4) A graduate-level course covering current research in the field of ecology with a focus at the community level. Experimental design, data analysis, and interpretation are emphasized. Silman

779. Molecular Techniques in Evolution and Systematics. (4) A lecture and laboratory course that explores molecular methods that are basic to many disciplines within biology, especially
ecology, evolution, and systematics. Laboratories focus on the acquisition of molecular techniques, including allozyme electrophoresis, mitochondrial plastid, and nuclear DNA restriction fragment length polymorphism analyses, gene amplification, PCR (polymerase chain reaction), direct and/or cycle sequencing, and RAPDS (randomly amplified polymorphic DNAs). Kron

780. Advanced Systematics. (3) A primary literature-based course that covers various subdisciplines within systematics including cladistic biogeography, history and theory of systematics, analytical techniques and database management of systematic data. Kron

782. Behavioral Ecology. (3) A lecture course analyzing behavioral solutions to challenges faced by animals in nature, emphasizing the role of natural selection in shaping behavior. Topics include mating systems, optimal foraging, sociobiology, parental care, and evolution of sexual reproduction. Anderson

783. Teaching Skills and Instructional Development. (3) A practical introduction to teaching college-level science courses. Emphasis is on: defining and achieving realistic course goals; mechanics of selecting, developing and refining topics for lecture or laboratory; effective presentation strategies; and creating an active learning environment. Students develop a teaching portfolio containing course syllabi, lecture outlines, and student-ready laboratory materials. Format combines didactic lectures, individual projects, and group discussions and critiques. Course meets for two, 2-hour periods each week. D. Johnson

791, 792. Thesis Research. (1-9) Staff

891, 892. Dissertation Research. (1-9) Staff

Biomedical Engineering

Bowman Gray Campus

Chair Peter Santago II

Associate Professors Craig A. Hamilton, Peter Santago II

Assistant Professors Joel L. Berry, Robert A. Kraft, Joel D. Stitzel

Instructor Ersin Bayram

Associate Faculty J. Daniel Bourland, Jonathan H. Burdette, H. Donald Gage, David M. Herrington, W. Gregory Hundley, Frederick W. Kremkau, Paul J. Laurienti, Daniel B. Kim-Shapiro, Kerry M. Link, Joseph A. Maldjian, Michael J. Morykwas, Michael T. Munley, Robert J. Plemmons, Bruce K. Rubin, Thomas L. Smith, Jian-Ming Zhu

The Department of Biomedical Engineering offers PhD and MS degrees in biomedical engineering in conjunction with the joint degree program between Wake Forest University and Virginia Polytechnic Institute and State University. The program emphasizes medical applications, particularly in image and signal processing and analysis, regenerative medicine, and biomechanics. The program is open to qualified applicants with undergraduate degrees in technical fields, including engineering, computer science, mathematics and physics. Additional training in the life sciences and signal/image processing is desirable, but not essential.

The program consists of traditional classroom instruction, clinical involvement, and independent research. For the MS degree, students must take a minimum of 22-24 credit hours of which 7-9 hours are thesis research. For the PhD degree, 90 credit hours must be taken, of which
39-54 hours are dissertation research. Courses for both degrees come from engineering and life science core courses and selected electives in engineering, life sciences, and related physical sciences. Selection of elective courses can be individualized to complement the student’s background and interests, and offerings include courses in the departments of physics, mathematics, and computer science at Wake Forest University.

During clinical rotations, students are exposed to technical equipment with medical applications, to patient care and procedures used in medical centers, and to the reading and interpreting of medical images. During the rotation, guest speakers provide lectures on clinical and health care topics, and students visit various hospital facilities.

Office and laboratory space are provided in the Magnetic Resonance Imaging (MRI) Building. Computer equipment includes desktop workstations, multiprocessor servers, personal computers, laser printers, scanners, and other necessary peripheral equipment. All of the computers are networked and connected to the clinical modalities, the University, and the Internet II. Facilities also include a chemistry lab and a machine shop with associated instrumentation and tools. Associated labs in clinical and basic science departments also provide equipment for student research.

Ongoing research topics include cardiac MRI, neuro-functional MRI, ultrasound tissue characterization, radiation treatment planning, Positron Emission Tomography (PET) image reconstruction, image classification, segmentation and compression, virtual reality, intravascular ultrasonography, tomosynthesis, and flow analysis based on mechanical modeling and imaging techniques. In conjunction with Virginia Polytechnic Institute and State University and clinical departments at the Wake Forest University School of Medicine, research in the areas of biomechanics, biosensors, and many other areas are available.

More information is available on the Web site, www.sbes.vt.edu. Prospective students are encouraged to contact individual faculty members or schedule a visit to the department.

600. Mammalian Physiology. (4) Topics include cell biology, neurological and muscle physiology, autonomic nervous system, cardiovascular system, cardiac function and hormonal regulation, pulmonary system, renal system, endocrinology, gastrointestinal system, glucose and lipid storage. Hamilton

603. Introduction to Biomedical Engineering. (3) Topics covered include cell membrane equivalent circuits, biomedical sensors, instrumentation, frequency and time domain, physiologic modeling, compartmental analysis, mass transport, cardiovascular biomechanics, biomaterials, tissue engineering, prosthetics, cell therapies, histology, biotechnology and genomics, radiographic imaging, computerized tomography, ultrasound, magnetic resonance imaging, lasers, and optics. Berry

610. Engineering Analysis of Physiologic Systems I. (3) Engineering analysis of human physiology. Physiologic systems are treated as engineering systems with emphasis on input-output considerations, system interrelationships and engineering analogs. Also studied are mass and electrolyte transfer, nerves, muscles and renal system. P—POI.

611. Engineering Analysis of Physiologic Systems II. (3) Engineering analysis of human physiology. Physiologic systems are treated as engineering systems with emphasis on input-output considerations, system interrelationships and engineering analogs. Also studied are cardiovascular mechanics, respiratory system, digestive systems, and senses. P—POI.

612. Musculoskeletal Biomechanics and Biologic Control. (3) Static and dynamic forces in the musculoskeletal system, joint reactions, and prosthetic joint design and replacement. Soft and

613. Biodynamics and Control. (3) Application of dynamics and control theory for analysis and simulation of human movement. Topics include dynamics of muscle contraction, forward-dynamic simulation of human movement, stability, neuromotor control feedback and robotics. Students are exposed to clinical problems in orthopedics and rehabilitation. P—POI.

616. Advanced Impact Biomechanics. (3) A review of impact biomechanics and critical investigation of the impact response of the human body. Participants study the dynamic response of the head, neck, chest, abdomen, upper and lower extremities. Real world examples from automobile safety, military applications, and sport biomechanics. P—POI.

620. Work Physiology. (3) Anthropometry, skeletal systems, biomechanics, sensorimotor control, muscles, respiration, circulation, metabolism, climate. Ergonomic design of task, equipment, and environment. P—POI.

621. Human Physical Capabilities. (3) An examination of human physical attributes in human-technology systems, with emphasis on models of anthropometry and biomechanics, on intero- and exteroceptors, and on the work environment; force fields (transitory and sustained), sound, light, and climate. P—POI.

624. Biomechanics of the Cardiovascular System I. (3) Mechanics of the heart, arterial blood vessels and microcirculation; history of the circulation; anatomy and physiology of the heart; mechanics of cardiac contraction; cardiac fluid mechanics; work, energy, efficiency of cardiac function. P—POI.

625. Biomechanics of the Cardiovascular System II. (3) Rheology of blood; hematology; elasticity of blood vessel walls; transport processes; control of the circulation; mathematical analysis of pulsatile blood flow and pulse-wave propagation through small arteries, capillary beds and extra-corpooreal devices. P—POI.

651. Digital Signal Processing. (3) The fundamentals of digital signal processing of data experimentally obtained from mechanical systems is covered. Attention is given to data acquisition, A/D conversion, aliasing, anti-aliasing filtering, sampling rates, valid frequency ranges, windowing functions, leakage, and various transform methods. Special attention is given to random, transient, and harmonic function data processing. Various methods of estimation of frequency response function (FRF) are explored. The estimation methods will be assessed as to their impact on FRF estimation errors.

652. Stochastic Signals and Systems. (3) Engineering applications of probability theory, random variables and random processes. Time and frequency response of linear systems to random inputs using both classical transform and modern state space techniques.

697. Independent Study. (3) This course allows a student to pursue a topic covered in a regular course in greater depth. The study usually involves extensive reading and tutorial sessions with a faculty supervisor. Written papers may be required.

698. Special Study. (3) This course is designed for a group of students. It may be used to study a timely topic—one in which there is current, but not necessarily lasting interest. It also may be used to launch an experimental course before the course is incorporated into the regular curriculum.

706. Clinical Rotation. (2) The course gives the student both a broad view of the use of engineering principles in medicine and general clinical care, together with an in-depth study
of a particular aspect of medicine under the direct supervision of a physician. The student is allowed to see the operation and maintenance of various clinical modalities, systems, and devices under the guidance of a working engineer or technician. The student participates in clinical rounds and in image reading sessions to gain insight into the actual operation and needs of departments using medical imaging modalities. Staff

708. Topics in Biomedical Engineering. (3) Topics in biomedical engineering that are not considered in regular courses. Content varies.

716. Computational Modeling in Impact Biomechanics. (3) Dynamic modeling of the human body subjected to impact loading. A combination of finite element analysis and multi-body simulation techniques. Utilizes software packages with dynamic solvers. Applications include computer-aided design for automobile safety, sports, biomechanics, and military restraint systems.

750. Medical Imaging I. (3) This is the first part of a two-semester sequence that covers medical imaging modalities from an engineering and signal processing viewpoint. Included, however, is much of the underlying physics of the modalities. The course covers MR imaging, x-ray, and x-ray physics, and an introduction to computerized tomography. Topics include underlying physical processes, data acquisitions, sampling and quantization, and clinical applications. Each modality is reviewed in the context of its underlying physical processors as well as a common model describing such basic imaging parameters as resolution, contrast, and noise. Munley

751. Medical Imaging II. (3) A study of several medical image modalities, including magnetic resonance (MR) imaging, positron emission tomography (PET), single photon emission computed tomography (SPECT), computer tomography (CT), and ultrasound; taught from signal processing point of view. Topics include an overview of the underlying physical processes, data acquisition, sampling, and quantization; image reconstruction techniques; relationships between the various modalities; and clinical and industrial applications. Kraft

752. Image Processing. (2) A study of advanced techniques of image processing. Image formation and perception, digitization, Fourier transform domain processing, restoration, and enhancement.

758. Statistical Pattern Recognition. (2) A study of image pattern recognition techniques and computer-based methods for scene analysis, including discriminant functions, feature extraction, classification strategies, clustering, and discriminant analysis. Applications to medicine and current research results are covered. P—Biomedical Engineering 652, or a course in statistics Staff

759. Advanced Image Analysis. (3) The course provides an overview of current trends in image analysis with in-depth studies of topics particularly relevant to medical imaging. Students are required to analyze and report on current literature. Computer-oriented projects allow students to implement several analysis algorithms. Topics include statistical parameter mapping, expectation maximization, Markov random fields, fuzzy set methods, and methods which incorporate prior knowledge. Emphasis is placed on defining image analysis problems in a cost minimization/optimization setting. Experience with an appropriate programming tool such as Matlab or IDL is required. A prior course in optimization is useful. P—Biomedical Engineering 652, 752, 758. Santiago

procedures, quality assurance, and radiation shielding for high energy facilities. Bourland, Munley

797, 798. Research. (1-9) Staff

Cancer Biology

Bowman Gray Campus

Chair Frank M. Torti

Professors Steven A. Akman, Arthur Frankel, William H. Gmeiner, Mark S. Miller, Frank M. Torti, Jianfeng Xu

Associate Professors Yong Chen, Zheng Cui, Jennifer Hu, S. Bruce King, Scott D. Cramer, G.L. Prasad, Gary Schwartz, Vijayasaradhi (Vijay) Setaluri, Suzy Torti, James Vaughn, Mark Welker

Assistant Professors Rebecca Alexander, Ulrich Bierbach, Karin Drotschmann, Dora Il’yasova, Paul Jones, Steven Kridel, George Kulik

Research Assistant Professor John Wilkinson

Associate Faculty Isabelle Berquin, Bernard Brown, Kazushi Inoue, Costas Koumenis, Greg Kucera, Tim Kute, Charles Morrow, David Ornelles, Stephen S. Rich, Michael Robbins, Alan Townsend

The graduate training program of the Department of Cancer Biology is designed to prepare students for future research careers focused on the issues relevant to human cancer. The graduate program was begun in 1997.

702. Tutorial in Cancer Biology. (2) This course focuses on specific topics related to cancer predisposition, development, progression, and treatment. These specialized topics include, but are not limited to, DNA damage and repair, damage signaling, cell death response, cell cycle checkpoint control, animal models and cancer treatment. Topics are determined by faculty. The class is a combination of lectures providing background information and student presentations introducing specific topics and related research articles in the field, followed by group discussions. Attendance and at least one full length presentation are mandatory to obtain credit.

703. Molecular Pathogenesis of Cancer. (2) This course reviews the discovery, biochemistry, and function of oncogenes and tumor suppressor genes, signal transduction pathways, and regulators of the cell cycle, including cyclins, cyclin-dependent kinases and inhibitors. Both normal function and dysfunction relating to cancer are covered. P—Familiarity with basic biochemistry, molecular biology, and cell biology. S. Torti

704. Cell Biology of Cancer. (3) The overall goal of this course is to teach students how to evaluate and communicate scientifically in the area of cell biology and cancer. Examples are taken from all areas of cancer in this advanced course. The course uses current peer-reviewed journal articles to teach fundamental concepts and act as a medium for allowing the students to communicate ideas. A secondary goal is to prepare the student to write a thesis proposal and practice defending this proposal. P—Undergraduate biochemistry and Cancer Biology 703. Thorburn, Koumenis
706. Carcinogens, DNA Damage and Repair. (3) This course covers the identification and reaction mechanisms of environmental carcinogens, DNA damage and mutagenesis by endogenous and exogenous mechanisms, and nucleotide excision repair, base excision repair, and mismatch repair. P—Undergraduate courses in organic chemistry and biochemistry. Miller

707. Topics in Cancer. (1) A weekly lecture series. Each week throughout the fall and spring semesters, a different topic in the clinical presentation, course, and treatment of human malignancies is presented. This course is designed to be a comprehensive overview of clinical oncology for clinical medical and radiation oncology fellows and cancer biology graduate students. Kucera, Staff

708. Molecular Targets of Cancer Therapy. (3) This course covers basic principles and recent advances in cancer chemotherapy, tumor immunology, and cancer gene therapy. Vaughn

711. Advanced Topics in Cancer Biology. (1) This course focuses on new and important aspects of research in cancer biology with an emphasis on the current literature. Themes are chosen by the course director and the students. A topic is selected for presentation by each student; with the help of the course director, the student prepares a short lecture to introduce the topic, assigns two key papers for participants to read, and provides a supplemental reading list. The following week, the student leads a discussion of key experimental findings. Broad participation from faculty, postdoctoral fellows, and graduate students is encouraged. Kridel, Staff

715. Introduction to Radiation Biology. (3) This course will focus on the biological changes which follow the interaction of ionizing and non-ionizing radiation with living matter. Particular emphasis is placed on the role of ionizing radiation in the treatment of cancer, mechanisms of radiation-induced carcinogenesis, and changes in normal and tumor cells at the molecular, cellular and tissue levels. Koumenis, Robbins

724, 725. Research in Cancer Biology. The cancer biology department offers opportunities for investigation in a variety of the facets of cancer biology under the guidance of staff members. Staff

Chemistry

Reynolda Campus

Chair Bradley T. Jones
John B. White Professor of Chemistry Willie L. Hinze
Thurman D. Kitchin Professor of Chemistry Dilip K. Kondepudi
William L. Poteat Professor of Chemistry Mark E. Welker

Professors Bradley T. Jones, Abdessadek Lachgar, Gordon A. Melson, Ronald E. Nolfte, Robert L. Swofford

Associate Professors Ulrich Bierbach, Christa Colyer, S. Bruce King
Assistant Professors Rebecca W. Alexander, Bernard A. Brown, Karen L. Buchmueller, Paul B. Jones, Suzanne L. Tobey, Akbar Salam

The Department of Chemistry offers programs of study leading to the MS and PhD degrees. Opportunities for study in courses and through research are available in analytical, biological, inorganic, organic, and physical chemistry. Research plays a major role in the graduate program. Since the number of graduate students is limited, the research program of the individual student is enhanced by close daily contact with the faculty.
All applicants for graduate work in the department are expected to offer as preparation college-level fundamental courses in general, analytical, organic, and physical chemistry; physics; and mathematics through one year of calculus. During registration all new graduate students take qualifier examinations covering the fields of analytical, biological, inorganic, organic, and physical chemistry. Programs of study are in part determined by the results of these examinations, and deficiencies are to be remedied during the student’s first academic year.

For the MS degree, the student is expected to undertake a broad program of course work at an advanced level and to complete successfully an original investigation. This investigation must be of the highest quality but necessarily limited in scope. Students who hold assistantships normally spend two years in residence for the completion of this degree.

For the PhD degree, individual programs are designed for each student under the guidance of the student’s faculty adviser and advisory committee and with the approval of the graduate committee.

The University preliminary examination requirement is satisfied by successful completion of a series of written cumulative examinations and by presentation of two research proposals, one of which is the dissertation research project. Each student is to present two departmental seminars, one of which will be on the results of his or her dissertation research. The student must present a dissertation and pass an examination on it as prescribed by the Graduate School, and other University requirements must be satisfied.

The chemistry program participates in the Interdisciplinary Graduate Track in Structural and Computational Biophysics. For more information, refer to the pages in this bulletin regarding the program.

The original graduate program, which led to the MS degree, was discontinued in 1949. The present MS program was begun in 1961, the PhD in 1972.

For Advanced Undergraduates and Graduate Students

*625, 626. Organic Synthesis. (4, 4) Reagents for and design of synthetic routes to organic molecules.

*634. Chemical Analysis. (3 or 4) Theoretical and practical applications of modern methods of chemical analysis. C—Chemistry 641.

*641, 642, 644. Physical Chemistry. (3 or 4) Fundamentals of physical chemistry.

651. Special Topics in Biochemistry. (3) Fundamentals of biochemistry, with particular emphasis on mechanistic analysis of metabolic pathways, enzymatic activity, and drug action.

*656, 657. Chemical Spectroscopy. (1.5, 1.5) Fundamental aspects of the theory and application of chemical spectroscopy, as found in the areas of analytical, inorganic, organic, and physical chemistry. Emphasis varies. Seven week courses. P—Chemistry 642 or 644, 661, or POI.

*Departmental graduate committee approval required.
661. Inorganic Chemistry. (3 or 4) Principles and reactions of inorganic chemistry. C—Chemistry 641.

670. Biochemistry: Macromolecules and Metabolism. (3) A lecture course introducing the principles of biochemistry, with emphasis on the experimental approaches that elucidated these principles. Major topics include structure, function, and biosynthesis of biological molecules, analysis of enzyme function and activity, bioenergetics, and regulation of metabolic pathways.

681, 682. Chemistry Seminar. Discussions of contemporary research. Attendance required of all graduate students and all chemistry majors. No credit.

For Graduate Students

701. Advanced Physical Chemistry. (3) An accelerated survey of classical and statistical thermodynamics, chemical kinetics, and quantum chemistry. Staff

711, 712. Directed Study in Chemistry. (1 or 2, 1 or 2) Reading and/or laboratory problems carried out under supervision of a faculty member. P—Permission of graduate committee. Staff

721. Advanced Organic Chemistry. (3) An accelerated survey of organic reactions and mechanisms. King, Welker, Jones

723. Transition-Metal Organic Chemistry. (3) Introduction to principles of bonding in organometallic chemistry and organometallic reaction mechanisms. Uses of transition-metal complexes in organic synthesis. Welker

726. Reactive Intermediates. (3) Mechanistic and preparative photochemistry. Structure and chemistry of excited states, free radicals, carbenes, and selected ions. Jones

734. Advanced Analytical Chemistry. (3) Principles and practical applications of analytical methods, with particular emphasis on modern spectral methods, electroanalytical methods, and chemical separations. Hinze, Jones, Colyer

735. Spectrochemical Analysis. (3) Principles of atomic and molecular spectrometric methods; discussion of instrumentation, methodology, and applications.

736. Chemical Separations. (3) Theory and practice of modern separation methods with emphasis on gas and liquid chromatographic techniques. Hinze, Jones, Colyer

745. Statistical Thermodynamics. (3) The application of statistical mechanics to chemistry to understand and predict the thermodynamic properties. Kondepudi

746. Chemical Kinetics. (3) Kinetics and mechanisms of chemical reactions; theories of reaction rates. Swofford, Kondepudi

747. Self-Organization in Nonequilibrium Chemistry. (3) Study of the phenomena of self-organization, such as oscillations, multistability, propagating waves, and formation of spatial
patterns. Kinetic systems with autocatalysis will be studied using bifurcation theory and other methods of non-linear systems. Kondepudi

751. Biochemistry of Nucleic Acids. (3) A survey of the structure, reactivity, and catalytic properties of RNA and DNA, including modern experimental techniques. Alexander

752. Protein Chemistry: Structures, Methods, and Molecular Mechanisms. (3) Advanced survey of protein biochemistry with an emphasis on structural families, enzyme catalytic mechanisms, expression and purification methods, and biophysical and structural experimental techniques. B. Brown

756. Biomolecular NMR. (1.5) This is a one-half semester course designed for graduate and advanced undergraduates focusing on NMR of small oligonucleotides and proteins. The course covers sample preparation, data acquisition and processing as well as generating solution structures from NMR data. A student should have command of 1D acquisition and processing as well as experience with 2D acquisition and processing before taking this class. All computational exercises will involve some familiarity with the UNIX operating system. P—POI. Wright

757. Macromolecular Crystallography. (1.5) This is a one-half semester course designed for graduate and advanced undergraduates focusing on structural characterization of macromolecules utilizing x-ray crystallography. The course covers sample preparation, diffraction theory, data acquisition and processing as well as structure solution and refinement techniques. P—Chemistry 656 highly recommended. Day

761. Chemistry of the Main Group Elements. (3) Principles of bonding, structure, spectroscopy, and reactivity of compounds of the main group elements. Synthesis and applications of organometallic compounds of the main group. Noftle

762. Coordination Chemistry. (3) Theory, structure, properties, and selected reaction mechanisms of transition metal complexes. Design and synthesis of ligands and their applications in bioinorganic chemistry. Bierbach, Melson

763. Solid State Chemistry and Its Application. (3) Principles of solid state chemistry. Applications to the design and synthesis of new materials with important technological applications such as superconductors, superacids, ion exchangers, semiconductors and ferromagnets. Lachgar

771. Quantum Chemistry. (3) The quantum theory and its application to the structure, properties, and interactions of atoms and molecules. Theoretical and computational approaches. Salam, Swofford

791, 792. Thesis Research. (1-9, 1-9) Staff

829. Tutorial in Organic Chemistry. (3) King, Welker, Jones

830. Heterocyclic Chemistry. (3) A survey of the major groups of heterocyclic compounds. Modern applications of heterocycles. King

832. Theoretical Organic Chemistry. (3) Molecular orbital treatment of structure and reactivity of organic molecules with emphasis on the applications of MO theory in pericyclic and photochemical reactions. Welker

833. Advanced Reaction Mechanisms. (3) Detailed analysis of mechanisms with emphasis on characterization of transition state structure.

834. Chemical Equilibria and Related Topics. (3) Theory of electrolytic solution equilibria as applied to chemical analysis and review of statistical treatment of data. Hinze

835. Advances in Analytical Chemistry—Thermal Analysis. (3) Theory, principles, and selected applications of thermal methods of analysis, including thermogravimetry, thermometric titrations, and differential scanning calorimetry. Hinze

836. Advances in Analytical Chemistry—Physical Methods of Measurements. (3) Theory, principles, and analytical applications of selected physical measurements, including determination of molecular weight distributions and reaction rate methods in chemical analysis. Hinze

837. Advances in Analytical Chemistry—Lasers in Chemistry. (3) Introduction and investigation of the link between chemistry and lasers. Topics will include modes of laser operation, laser-based probes, and laser-induced chemical change. Jones, Swofford

838. Advances in Analytical Chemistry—Luminescence Spectroscopy. (3) Instrumentation, methods, and applications of molecular luminescence spectroscopy. Jones, Swofford

839. Tutorial in Analytical Chemistry. (2 or 3) Colyer, Hinze, Jones

843. Tutorial in Advanced Kinetics. (3)

844. Tutorial in Thermodynamics/Statistical Mechanics. (3) Kondepudi

848. Lasers in Physical Chemistry. (3) Survey of lasers and their use to study physical-chemical processes. Topics include types of lasers, range of spectral and temporal operation, methods of detection, and application to specific chemical problems. Swofford

849. Tutorial in Chiral Asymmetry in Chemistry and Physics. (3) Chiral asymmetry in nuclear, atomic, and molecular interactions. General group theoretic approach to spontaneous chiral symmetry breaking and the study of specific mechanisms. Kondepudi

860. Analytical Electrochemistry. (3) Applications to the identification and quantification of chemical compounds. Hinze, Jones

861. Applications of Electrochemistry. (3) Determination of inorganic and organic reaction mechanisms, electrochemical synthesis, applications to materials science. Noftle

862. Special Topics in Coordination Chemistry. (3) Selected applications of transition metal chemistry such as in paramagnetic resonance (NMR, EPR), bioinorganic chemistry, and industrial processes. Bierbach, Melson

863. Crystallography. (3) Crystal structure determination using powder and single crystal x-ray diffraction. Lachgar

864. Modern Chemical Spectroscopy. (3) Applications of vibrational, rotational, electronic, and nuclear spectroscopy to current problems in chemistry. Beirbach, Lachgar, Noftle
The Department of Communication offers graduate study leading to the MA degree. The minimum requirement is thirty-three semester hours of work, six of which are allotted for the thesis.

The program requires a core of courses in general theories and research methodology and then allows students to take courses in context areas such as health communication, intercultural communication, interpersonal communication, mass communication, organizational communication, and public communication. In addition, the department provides work in communication ethics, communication technologies, and argumentation. A program of study should include six hours of thesis work and a minimum of twenty-seven hours of coursework, of which six hours may be in electives outside the department.

All students must demonstrate competence in a research skill relevant to their thesis and/or professional goals. Most students demonstrate their competency in empirical methodology or critical methodology; however, a foreign language also may be elected. Graduate courses taken to fulfill the research skill requirement may not count toward the required twenty-three hours for the MA.

Students who enroll for the master's degree are expected to have a strong undergraduate background in the discipline or in related areas. Teaching experience may be accepted in partial fulfillment of the background requirement. The student who has certain deficiencies in undergraduate training may be asked to complete undergraduate requirements at the University while studying for the degree.

Although it is possible to obtain the MA degree in one calendar year, most students find it advantageous to take two academic years to complete the program.

The program began in 1969. Departmental graduate committee: Mitra (director), Giles, Hyde, Louden, McMillan, and Zulick.
For Advanced Undergraduates and Graduate Students

600. Classical Rhetoric. (3) A study of major writings in Greek and Roman rhetorical theory from the Sophists to Augustine. Offered in alternate years. Zulick

601. Semantics and Language in Communication. (3) A study of how meaning is created by sign processes. Among the topics studied are language theory, semiotics, speech act theory, and pragmatics. Hazen, Hyde, Zulick

602. Argumentation Theory. (3) An examination of argumentation theory and criticism; emphasis on both theoretical issues and social practices. Offered in alternate years. Hazen, Zulick

603S. Directing the Forensics Program. (1-3) A pragmatic study of the methods of directing high school and college forensics. Laboratory work in the High School Debate Workshop. Summer only. Staff

604. Freedom of Speech. (3) An examination of the philosophical and historical traditions, significant cases, and contemporary controversies concerning freedom of expression. Offered in alternate years. Llewellyn, Zick

605. Communication and Ethics. (3) A study of the role of communication in ethical controversies. Hyde

606. Burke & Bakhtin Seminar. (3) Examines the language theories of Kenneth Burke and Mikhail Bakhtin in relation to contemporary rhetorical theory. Zulick

610. Advanced Media Production. (3) Special projects in audio and video production for students with previous media production experience. P—POI. Staff

611. Film Theory and Criticism. (3) A study of film aesthetics through an analysis of the work of selected filmmakers and film critics. P—POI. Dalton

612. Film History to 1945. (3) A survey of the developments of motion pictures to 1945. Includes lectures, readings, reports, and screenings. Dalton

613. Film History since 1945. (3) A survey of the development of motion pictures from 1946 to present day. Includes lectures, readings, reports, and screenings. Dalton

614. Mass Communication Theory. (3) Theoretical approaches to the role of communication in reaching mass audiences and its relationship to other levels of communication. Mitra

615. Communication and Technology. (3) An exploration of how communication technologies influence the social, political, and organizational practices of everyday life. Hyde, Mitra

617. Communication and Popular Culture. (3) Explores the relationship between contemporary media and popular culture from a cultural studies perspective using examples from media texts. Mitra

630. Communication and Conflict. (3) A review of the various theoretical perspectives on conflict and negotiation as well as methods for managing relational conflict. Rogan

635. Survey of Organizational Communication. (3) An overview of the role of communication in constituting and maintaining the pattern of activities that sustain the modern organization. Llewellyn, McMillan

636. Organizational Rhetoric. (3) Explores the persuasive nature of organizational messages—those exchanged between organizational members and those presented on behalf of the organization as a whole. Offered in alternate years. McMillan
637. **Rhetoric of Institutions.** (3) A study of the communication practices of institutions as they seek to gain and maintain social legitimacy. Offered in alternate years. *Llewellyn*

638. **The Art of Twentieth-Century African-American Rhetoric.** (3) This course explores how African Americans have invented a public voice in the twentieth century. The course focuses on how artistic cultural expression, in particular, has shaped black public speech. *Watts*

640. **American Rhetorical Movements to 1900.** (3) Examines the interrelation of American rhetorical movements through the nineteenth century by reading and analyzing original speeches and documents, with emphasis on antislavery and women’s rights. *Zulick*

641. **American Rhetorical Movements since 1900.** (3) Examines the interrelation of American rhetorical movements in the twentieth century by reading and analyzing original speeches and documents. Among the movements addressed are labor, civil rights, student radicals, and women’s liberation. *Watts, Zulick*

642. **Political Communication.** (3) Study of electoral communication including candidate and media influences on campaign speeches, debates, and advertising. Offered in alternate years. *Louden*

643. **Presidential Rhetoric.** (3) Examines theory and practice of speechmaking and mediated presidential communication. *Louden*

650. **Intercultural Communication.** (3) An introduction to the study of communication phenomena between individuals and groups with different cultural backgrounds. Offered in alternate years. *Hazen, Mitra, Rogan*

651. **Comparative Communication.** (1.5, 3) A comparison of communicative and rhetorical processes in the United States with one or more other national cultures with an emphasis on both historical and contemporary phenomena. A) Japan; B) Russia; C) Great Britain; D) Multiple countries. Offered in alternate years. *Hazen*

654. **International Communication.** (3) An in-depth look at the role of mass media in shaping communication between and about cultures using examples from traditional and emerging media systems. *Hazen, Mitra*

655. **Health Communication.** (3) An examination of theories, research, and processes of health communication in contemporary society. *Giles*

670. **Special Topics.** (1-4) An examination of topics not covered in the regular curriculum. *Staff*

680. **Great Teachers.** (3) An intensive study of the ideas of three noted scholars and teachers in the field of communication. Students will interact with each teacher during a two- or three-day visit to Wake Forest. *Staff*

For Graduate Students

719. **Theory and Research Design in Communication Science.** (3) An examination of communication science theory with a focus on critiquing and utilizing theory in research, accompanied by an overview of quantitative research design and methodology. *Giles, Helme, Mitra, Rogan*

752. **Contemporary Rhetorical and Communication Theory.** (3) An introduction to theory building in human communication and rhetoric, with a survey and evaluation of major
contemporary groupings of theorists. Approaches studied are those which emphasize the symbol (George Herbert Mead and Kenneth Burke), human relations (Martin Buber), the media (Marshall McLuhan), and systems (Norbert Wiener). Hazen, Watts

753. Seminar in Persuasion. (3) A study of contemporary social science approaches to persuasion theory and research. Influence is examined with interpersonal, social, and mass media contexts. Louden

754. Rhetorical Criticism. (3) The study of critical approaches to the role of rhetoric in contemporary society, with emphasis on methodology. Llewellyn, McMillan, Watts, Zulick

758. Rhetorical Theory. (3) Introduction to primary texts in the theory of rhetoric including classical theories, dramatism, semiotics, and critical/cultural studies. Llewellyn, McMillan, Watts, Zulick

759. Rhetorical Criticism. (3) The critical application of rhetorical theories aligning with the traditions covered in Communications 758. P—Communications 758. Llewellyn, McMillan, Watts, Zulick

763, 764. Proseminar in Communication. (1, 1) An introduction to graduate study in communication. Mitra

773. Seminar in Interpersonal Communication. (3) A study of recent research and theoretical developments in dyadic communication. Methodology examined includes conversational analysis, field, and experimental approaches. Rogan

774. Research and Theory of Organizational Communication. (3) Advanced study of theoretical approaches to the role of communication in organizations and empirical application of such theories. Llewellyn, McMillan

780. Special Seminar. (1-3) The intensive study of selected topics in communication. Topics may be drawn from any theory or content area of communication, such as persuasion, organizational communication, or film. Staff

781, 782. Readings and Research in Speech Communication. (1-3, 1-3) Students may receive credit for a special reading project in an area not covered by regular courses or for a special research project not related to the master’s thesis. Staff

791, 792. Thesis Research. (1-9) Staff
Pathology (Section on Comparative Medicine)

Section Head Richard W. St. Clair

Associate Professors J. Mark Cline, Paul A. Dawson, Randolph Geary, Iris J. Edwards, Nancy Kock, Thomas C. Register, Gregory S. Shelness, Jeanne M. Wallace

Assistant Professors Cynthia J. Lees, Richard W. Young, Liqing Yu

Instructors Susan E. Appt, Charles E. Wood

Associate Faculty Mary Lou Voytko

The section on comparative medicine in the Department of Pathology offers a program leading to the MS degree in Comparative Medicine for individuals with a professional degree (DVM or MD).

Research is an important facet of departmental activities, and research training is emphasized in its educational programs. Investigative efforts focus on animals as models of human disease and the use of animals in biomedical research. Major interests include cardiovascular disease (especially atherosclerosis), lipoprotein metabolism, matrix and cell biology, behavioral biology and reproductive medicine, comparative pathology, and osteopathology.

There is an active interest in the biology and diseases of nonhuman primates. A colony of approximately 1,000 nonhuman primates of several species is maintained to provide ample material for students interested in nonhuman primate biology. A large colony of specially bred pigeons is maintained for atherosclerosis research. In addition, specialized colonies of rodents and other species also are used in Wake Forest University’s biomedical research programs.

The MS degree has been offered since 1964.

703. Diseases of Laboratory Animals. (3) A course in which the naturally occurring diseases of laboratory animals are considered in depth. Lectures are organized by animal species and are designed to emphasize the prevalence and physiological and pathological expression of both infectious and metabolic/degenerative diseases. Additional emphasis is placed on the diagnosis and management of these diseases in the laboratory animal facility. Special topics, including disease surveillance, zoonoses, and strain differences in disease susceptibility, are also presented. P—DVM or MD degree or POI. Offered in odd-numbered years. J.M. Wallace, Staff

706. Animal Models in Biomedical Research. (3) Designed to provide the student with the current knowledge about animal models used in biomedical research. The major disease problems of man are discussed by organ system. For each disease problem, the advantages and disadvantages of animal models in current use are discussed. Both experimentally induced and naturally occurring diseases of animals are considered. P—POI. Offered in even-numbered years. J. Wagner, Staff

708. Medical Primatology. (3) Acquaints the student with the biology, laboratory management, behavior, and diseases of the nonhuman primates of biomedical interest. Emphasis is placed on both: 1) the clinical manifestations, diagnosis, and management of diseases that are
the principal causes of morbidity and mortality in laboratory primates; and 2) those aspects of social structure and colony management that contribute to susceptibility and resistance to such diseases. The course also considers issues relating to the psychological well-being of laboratory primates. P—POI. Offered in even-numbered years. Adams, Kaplan

709, 710. Advanced Topics in Comparative Medicine. (Credit to be arranged, 1-5) An advanced lecture and student participation course dealing with areas of new knowledge in comparative medicine. P—General biochemistry, general pathology, or equivalents. Staff

711, 712. Comparative Pathology Conference. (1, 1) Necropsy cases are presented and discussed by postdoctoral fellows and staff. Management of current medical problems and the comparative aspects of the materials presented are emphasized. Staff

713, 714. Research. The department offers research in a variety of topics in comparative medicine, including research in preparation for the master’s thesis and the doctoral dissertation. Staff

Computer Science

Reynolda Campus

Chair Stan J. Thomas

Reynolds Professors Jacquelyn S. Fetrow, Robert J. Plemmons

Associate Professors Jennifer J. Burg, Daniel Cañas, David J. John, Stan J. Thomas, Todd C. Torgersen

Assistant Professors Errin Fulp, V. Paúl Pauca

Adjunct Assistant Professor Timothy E. Miller

Lecturer Yue-Ling Wong

The department offers a program of study leading to the master of science degree in computer science. The program is designed to accommodate students seeking either a terminal master’s degree or preparation for PhD work at another institution.

The Master of Science in Computer Science

In addition to the graduate school admission requirements, students entering the graduate program must have completed computer science course work in the areas of: 1) programming in a modern high-level language, 2) basic computer organization and architecture, 3) data structures, and 4) principles of operating systems and networks. They should also have completed mathematics courses equivalent to: 1) differential and integral calculus including infinite series, 2) discrete mathematics, 3) linear algebra, and 4) probability and statistics.

The requirements for the Master’s of Science degree may be met in one of three ways. The courses Computer Science 631, 641, 702, and 721 are identified as the core courses for the MS degree and are required of all students.

The MS degree with thesis requires thirty semester hours including six hours of thesis research (Computer Science 791, 792) and a successfully completed thesis. The coursework must include the twelve-hour core. The remaining twelve hours are selected from computer science courses with at least six of these hours from 700-level courses other than Computer Science 795.

The MS degree with project requires thirty-three semester hours including three hours of project research (Computer Science 795) and a successfully completed project. The coursework must include the twelve-hour core. The remaining eighteen hours are selected from computer
science courses with at least six of these hours from 700-level courses other than Computer Science 791, 792.

For the MS degree without thesis or project, thirty-six semester hours are required. The coursework must include the twelve-hour core. The remaining hours are selected from computer science courses with at least six of these hours from 700-level courses other than Computer Science 791, 792 and 795.

With the approval of the graduate adviser, graduate courses may be taken in related areas to fulfill requirements; however, no more than six such hours may count toward the degree.

Computer science graduate students can apply to participate in the Interdisciplinary Graduate Track in Structural and Computational Biophysics. The specific requirements are found in this bulletin under the courses of instruction. On successful completion of this track a student will earn an MS degree in computer science (thesis option) with a Certification in Structural and Computational Biophysics.

The Master’s of Science program in computer science began in 1991. Current information on the program and links to faculty interests can be accessed on the Web at www.cs.wfu.edu.

Computing Resources

The department supports UNIX-based workstations, file servers, and personal computers in a local area network, with high-speed access to the Internet. Access is also available to the University’s parallel computing systems for high performance computation.

For Advanced Undergraduates and Graduate Students

611. Computer Architecture. (3) An in-depth study of computer systems and architectural design. Topics include processor design, memory hierarchy, external storage devices, interface design, and parallel architectures.

621. Database Management Systems. (3) An introduction to large-scale database management systems. Topics include data independence, database models, query languages, security, integrity, and concurrency.

631. Object-oriented Software Engineering. (3) A study of software design and implementation from an object-oriented perspective, covering abstraction, encapsulation, data protection, inheritance, composition, polymorphism and dynamic versus static binding. Students practice software engineering principles through team projects.

641. Operating Systems. (3) The study of the different modules that compose a modern operating system. In-depth study of concurrency, processor management, memory management, file management, and security.

643. Internet Protocols. (3) The study of wide area connectivity through interconnection networks. Emphasis will be placed on Internet architecture and protocols. Topics include addressing, routing, multicasting, quality of service, and network security.

646. Parallel Computation. (3) A study of hardware and software issues in parallel computing. Topics include a comparison of parallel architectures and network topologies, and an introduction to parallel algorithms, languages, programming, and applications.

652. Numerical Linear Algebra. (3) Numerical methods for solving matrix and related problems in science and engineering. Topics will include systems of linear equations, least squares
methods, and eigenvalue computations. Special emphasis given to parallel matrix computations. Beginning knowledge of a programming language such as Pascal, FORTRAN, or C is required. Credit not allowed for both Mathematics 626 and Computer Science 652.

655. Introduction to Numerical Methods. (3) Numerical computations on modern computer architectures; floating-point arithmetic and round-off error. Programming in a scientific/engineering language such as MATLAB, C, or FORTRAN. Algorithms and computer techniques for the solution of problems such as roots of functions, approximation, integration, systems of linear equations, and least squares methods. Credit not allowed for both Mathematics 655 and Computer Science 655.

661. Digital Media. (3) An introduction to digital media covering sampling and quantization, resolution, color representation, multimedia file formats, data encoding and compression, multimedia network issues, streaming data, and multimedia programming.

663. Computer Graphics. (3) A study of software and hardware techniques in computer graphics. Topics include line and polygon drawing, hidden line and surface techniques, transformations, and ray tracing.

671. Artificial Intelligence. (3) An introduction to problems in artificial intelligence. Knowledge representation and heuristic search in areas such as planning, machine learning, pattern recognition, and theorem proving.

685. Bioinformatics. (3) An introduction to bioinformatics and computing techniques essential to current biomedical research. Topics include genome and protein sequence and protein structure databases, algorithms for bioinformatics research, and computer architecture and environment considerations. Also listed as Physics 627. Fetrow, John

691. Selected Topics. (1, 2, 3) Topics in computer science which are not studied in regular courses or which further examine topics begun in regular courses. P—POI.

693. Individual Study. (1 or 2) A course of independent study directed by a faculty adviser. By prearrangement.

For Graduate Students

702. Theory of Computation. (3) Basic theoretical principles of computer science. Topics include the relationship between automata and grammars, Church’s thesis, unsolvability, and computational complexity.

721. Theory of Algorithms. (3) Design and analysis of algorithms. Topics may include time and space complexity analysis, divide-and-conquer algorithms, the fast Fourier transform, NP-complete problems, and efficient algorithms for operations on lists, trees, graphs, and matrices.

726. Parallel Algorithms. (3) This course gives a thorough, current treatment of parallel processing and supercomputing. Modern high-performance commercial architectures, parallel programming, and various supercomputing applications are discussed. Hands-on experience is emphasized. Students will be given access to a variety of machines. Burg, John, Plemmons, Torgersen

743. **Topics in Operating Systems.** (3) Issues in operating system development; resource management, queuing theory, concurrent processing, and languages for operating system development. P—Computer Science 641. Cañas

753. **Nonlinear Optimization.** (3) The problem of finding global minimums of functions is addressed in the context of problems in which many local minima exist. Numerical techniques are emphasized, including gradient descent and quasi-Newton methods. Current literature will be examined and a comparison made of various techniques for both unconstrained and constrained optimization problems. Credit not allowed for both Mathematics 753 and Computer Science 753. P—Computer Science (or Mathematics) 655. Plemmons

754. **Numerical Methods for Partial Differential Equations.** (3) Numerical techniques for solving partial differential equations (including elliptic, parabolic and hyperbolic) are studied along with applications to science and engineering. Theoretical foundations are described and emphasis is placed on algorithm design and implementation using either C, FORTRAN or MATLAB. Also listed as Mathematics 754. P—Computer Science 655 or Mathematics 655.

753. **Nonlinear Optimization.** (3) The problem of finding global minimums of functions is addressed in the context of problems in which many local minima exist. Numerical techniques are emphasized, including gradient descent and quasi-Newton methods. Current literature will be examined and a comparison made of various techniques for both unconstrained and constrained optimization problems. Credit not allowed for both Mathematics 753 and Computer Science 753. P—Computer Science (or Mathematics) 655. Plemmons

754. **Numerical Methods for Partial Differential Equations.** (3) Numerical techniques for solving partial differential equations (including elliptic, parabolic and hyperbolic) are studied along with applications to science and engineering. Theoretical foundations are described and emphasis is placed on algorithm design and implementation using either C, FORTRAN or MATLAB. Also listed as Mathematics 754. P—Computer Science 655 or Mathematics 655.

765. **Image Processing.** (3) Advanced techniques in image processing including image formation and corruption models, digitization, Fourier domain methods, enhancement, restoration, and tomographic reconstruction. P—Computer Science 721. Pauca, Plemmons, Torgersen

766. **Pattern Recognition.** (3) A study of statistical pattern recognition techniques and computer-based methods for decision-making, including discriminant functions, feature extraction, and classification strategies. The emphasis is on applications to medical image analysis. P—POI. Pauca, Plemmons, Torgersen

767. **Computer Vision.** (3) Techniques for extracting features from images: optimal thresholding, 2D and 3D feature measurement, graph isomorphism and graph matching methods. P—Computer Science 766. Pauca, Plemmons, Torgersen

775. **Neural Networks.** (3) Design of artificial neural networks. Introduction to the relevant neurophysiology, feedforward networks, recurrent networks, and applications to pattern recognition and optimization. Thomas

779. **Topics in Artificial Intelligence.** (3) Advanced topics in artificial intelligence. Individual projects are assigned. P—Computer Science 671. Burg, John, Thomas

781. **Computer Science Seminar.** (0) Discussions of contemporary research. No credit.

782. **Computational Biology Journal Club.** (1) Seminal and current publications in computational biology and biophysics. Each week a member of the class makes an oral presentation on a chosen publication and leads the ensuing discussion.

790. **Advanced Topics in Computer Science.** (3) Advanced topics of current interest in computer science not covered by existing courses. P—POI. Staff

791, 792. **Thesis Research.** (1-9) Staff

795. **Project.** (3) Staff
The master of arts in counseling degree is awarded to candidates who successfully complete a minimum of sixty semester hours in a planned and directed program of study. The program consists of a common core of courses to provide knowledge in eight areas: human growth and development, social and cultural foundations, helping relationships, group work, career and lifestyle development, appraisal, research and program evaluation, and professional orientation. The program also supplies clinical instruction with practicum and internship experiences. In addition, students must select a program specialty area—school counseling or community counseling—in which they complete their internships and take courses that assure at least entry-level competence.

School Counseling Program. The School Counseling Program is designed to provide prospective school counselors with the knowledge, skills, and competence necessary to establish and conduct effective developmental guidance and counseling programs in schools, kindergarten through the twelfth grade. The course of study that leads to a license in school counseling in North Carolina (and through reciprocity agreements leads to licensure in most other states), is based on the requirements of the North Carolina State Board of Education, and is accredited by the National Council for Accreditation of Teacher Education, and the Council on Accreditation of Counseling and Related Educational Programs (CACREP).

Community Counseling Program. In the Community Counseling Program, students are prepared for counseling in a wide variety of community settings and agencies. The course of study is accredited by the Council on Accreditation of Counseling and Related Educational Programs.

Admission to the Program. Admissions decisions are based on consideration of a combination of criteria: college grade-point average, Graduate Record Examination scores, recommendations, professional commitment, work experience, and suitability for the profession. Applicants being considered for admission are required to have a personal interview with program faculty.

Continuance in the program and admission to candidacy are based on success in academic courses and on personal, ethical, and performance considerations.

Graduates are eligible to sit for the National Certified Counselor examination. Those who complete the School Counseling Program are eligible to apply for licensure with the Public Schools of North Carolina.

721. Research Analysis in Counseling. (3) Qualitative and quantitative research methods. Analysis and evaluation of research-based literature in the counseling field. Program evaluation. Counseling students only. *Anderson, Karr*

736. Appraisal Procedures for Counselors. (3) Appraisal, assessment, and diagnosis of personality, emotional, intellectual, and learning characteristics and disorders of clients in schools, colleges, and community human service agencies. Use of tests in counseling as an adjunct to clinical impressions. Counseling students only. Newsome

737. Counseling Skills and Techniques. (2) Basic communication skills, helping relationships, and strategies for personal change. Issues and ethics in counseling. Counseling students only. Veach

738. Counseling Practicum. (2) Supervised experience for the development of individual and group counseling skills under individual and group supervision in a school or community agency. Involvement in direct service work and activities similar to those of regularly employed professional staff. Individual and group supervision of practicum experiences. Counseling students only. P—Education 737. Henderson, Newsome, Veach

739. Advanced Counseling Skills and Techniques. (2) Advanced and specialized counseling interventions including reflecting, challenging, and assessing skills. Demonstration of skill level required. Counseling students only. P—Counseling 737. Veach

740. Professional Orientation to Counseling. (3) Course covers the history, roles, organizational structures, ethics, standards, specializations, and credentialing in the profession of counseling. Public policy processes and contemporary issues are also considered. Counseling students only. Gladding

741. Theories and Models of Counseling. (3) The study of theories and approaches to professional counseling: psychoanalytic (Freud, Adler, Jung), person-centered (Rogers), existential (May, Frankl), behavioral (Skinner, Glasser), cognitive/rational (Ellis), holistic/systemic, eclectic. Professional orientation, issues, ethics, cultural pluralism, and trends in counseling. Counseling students only. Anderson, Karr

742. Group Procedures in Counseling. (3) An experiential and conceptual exploration of the psychological dynamics and interpersonal communication of small groups, including group structure, leadership models, group process and practice, stages of group development, group techniques, and ethical principles. P—Education 741. Counseling students only. Anderson

743. Career Development and Counseling. (3) Vocational development throughout life; psychological aspects of work; occupational structure and the classifications of occupational literature; theories of vocational choice and their implications for career counseling. Counseling students only. Newsome

744. Counseling Internship I. (3) Supervised counseling experience in a school, college, or community agency under a regularly employed staff member professionally trained in counseling. Observation of and active participation in direct service work to clients. Monitoring of audio or videotaped interviews. Case review. Counseling students only. P—Education 737 and 741. Henderson, Newsome, Veach

a. School

b. Community agency

745. Counseling Internship II. (3) Supervised counseling experience in a school, college, or community agency under a regularly employed staff member professionally trained in counseling. Observation of and active participation in direct service work to clients. Monitoring of audio or videotaped interviews. Case review. Counseling students only. P—Education 744. Henderson, Newsome, Veach

a. School

b. Community agency
746. Counseling Children. (3) Theory and practice of counseling with children in schools and community agencies. Elementary school counseling; models, methods, and materials. Counseling children with special emotional, learning, psychological, or behavioral concerns. Counseling students only. Henderson

747. Cultures and Counseling. (3) The influence of culture in human development and in counseling relationships. A study of personal and ethnic diversity and commonality. Counseling students only. Henderson

748. Life Span Development: Implications for Counseling. (3) Examination of major theories and principles of human development across the life span, including physical, psychological, intellectual, social, and moral perspectives. Counseling students only. Henderson

749. School Guidance and Counseling. (3) The organization and management of comprehensive school guidance and counseling programs. Individual and group counseling, consultation, coordination, and collaboration in student services in schools. Program development in elementary, middle, and secondary schools. Counseling students only. Henderson

750. The Vienna Theorists—Freud, Adler, Moreno and Frankl. (3) An examination of the original writings of four of the leading theorists of modern counseling, which is enhanced by a visit to the city in which they initially formulated their clinical ideas. Students will read and discuss several original writings of each practitioner—Sigmund Freud, Alfred Adler, Jacob Moreno, and Victor Frankl—prior to and during a two-week stay in the Wake Forest University Flow House in Vienna during which they will visit relevant historical sites and institutes. Counseling students only. Staff

760. Issues in School Counseling. (3) This course is designed to allow students to investigate current issues related to the practice of school counseling. The emphasis will be on identifying appropriate prevention responses to these issues. Counseling students only. Henderson

762. Issues in Community Counseling. (3) This course examines specific issues related to community counseling including, but not limited to, reimbursement, outcome evaluation, advocacy strategies, community counselor roles and functions. Counseling students only. Veach.

763. Specialized Study in Counseling. (1-3) Exploration of special topics or areas of practice in the field of counseling. Counseling students only. Staff

764. Creative Arts in Counseling. (1-3) This course examines history, theories, processes, and techniques of using the creative arts in counseling with clients throughout the life span. Particular attention is given to the visual and verbal arts, such as drawing, imagery, photography, cartooning, cinema, movement, dance, literature, drama, and music. Counseling students only. Gladding

765. Addiction Counseling. (3) This course introduces the concepts of chemical dependency, counseling procedures and techniques, and treatment considerations. The student will have opportunities to apply models of chemical dependency counseling to hypothetical situations at various stages of substance use. Counseling students only. Veach
770. Counseling and Mental Health. (3) Studies the healthy personality and reviews developmental and situational problems in adjustment. Explores personality and systemic interventions for career, educational, and relationship concerns. P—Counseling students only or POI. Veach

771. Community Counseling. (3) History, philosophy, organization, management, and delivery of counseling services in various community agencies. Preventative, developmental, and remedial strategies for use with various populations. Counseling students only. Veach

772. Marriage and Family Systems. (3) Study of the institutions of marriage and the family from a general systems perspective. Exploration of how changes in developmental and situational aspects of the family life cycle influence individuals within the systems of marriage and the family. Both horizontal and vertical dimensions of change are focused on through the use of genograms. Different forms of family lifestyles, such as dual career, single parent, and blended are covered. Counseling students only. Gladding

773. Family Counseling. (3) Examination of the philosophy and goals of seven major theories of family counseling (Bowenian, Adlerian, psychodynamic, experiential/humanistic, behavioral, structural, strategic) as well as the development of the profession of family counseling from an historical and current trends perspective. Differences between family counseling and individual/group counseling are highlighted and ethical/legal considerations for working with family units are stressed. Techniques associated with theories are demonstrated through video and play simulations. Research methods for gathering data on families are highlighted. Counseling students only. Gladding

774. Marriage Counseling. (3) Study of the philosophy and goals of six main theories of marriage counseling (psychoanalytic, social learning, Bowenian, structural-strategic, experiential/humanistic, and rational-emotive) and the techniques associated with each. Historical and current trends associated with the field of marriage counseling are explored, along with related issues such as premarital counseling, family-of-origin influences within marriage, and widowhood. Appropriate marriage assessment instruments, research methods, and ethical/legal questions involved in marriage counseling are addressed. Counseling students only. Gladding

775. Marital and Family Health and Dysfunctionality. (3) This course examines system and individual dynamics associated with marital and family health and dysfunctionality. Longitudinal research on factors connected with healthy, long-term marriages and functional family life are explored. Interactive patterns that lead to such marital and family dysfunctionality as spouse and child abuse, anorexia nervosa, addictive disorders, and dependency are examined. Counseling students only. Gladding

780. Professional, Ethical and Legal Issues in Counseling. (2) This course provides an overview of the critical professional issues in counseling with emphasis on current ethical, legal, and values-related questions and the relationship of these issues to the counselor’s role in training, supervision, consultation, appraisal, and research. P—Advanced graduate standing or permission of instructor. Counseling students only. Anderson, Henderson

782. Developmental Counseling Psychology. (3) Theoretical, research, and methodological aspects of a developmental/holistic/systems framework for counseling. Integration and application of major theories and approaches to counseling. Counseling students only. Staff

The Department of Education offers professional graduate programs in teacher education. The goals and requirements for these programs are available in the licensure office of the department.

Master Teacher Fellows Program. This program is designed for a select group of students who have earned a baccalaureate degree with a major in biology, chemistry, English, French, history, mathematics, physics, social science, or Spanish. Students enter the program in the first week of June and in thirteen months can earn the master of arts in education and the M secondary teaching license.

Master Teacher Associates Program. Fellowships are offered to students who have earned the initial A license to teach at the secondary level, have a record of strong teaching, and want to pursue graduate study. Students in this program earn an M license and help supervise student teachers who are earning an initial license.

Visiting International Fellows Program. This program offers a master of arts in education that is appropriate to the professional needs of the diverse group of excellent teachers from other nations who are teaching in American schools. The program can be completed in three summers.

Licensure Only Coursework. Students who wish to enroll in graduate courses to obtain or renew a license may seek admission through the Licensure Officer of the Department of Education. The GRE is not required.

A copy of the Title II Federal Report Card may be obtained in the licensure office of the Department of Education.

For Advanced Undergraduates and Graduate Students

601. Microcomputer and Audiovisual Literacy. (3) An introduction to microcomputers for educators and other users, emphasizing familiarity with computers, use and evaluation of software, and elementary programming skills. Experience with audiovisual materials and techniques is included.

602. Production of Instructional Materials. (3) Methods of producing instructional materials and other technological techniques. P—Education 601 and senior or graduate standing.

603. History of Western Education. (3) Educational theory and practice from ancient times through the modern period, including American education.

604. Theories of Education. (3) Contemporary proposals for educational theory and practice studies in the context of social issues.
605. The Sociology of Education. (3) A study of contemporary educational institutions. This course examines such issues as school desegregation, schooling and social mobility, gender equity, and multiculturalism.

606. Studies in the History and Philosophy of Education. (3) A study of selected historical eras, influential thinkers, or crucial problems in education. Topics announced annually.

607. Technology in Education. (3) An introduction to the use of computers in education. Includes use of Internet, software, and hardware including multimedia to meet instructional goals.

612. Teaching Children with Special Needs. (3) A survey of the various types of learning problems commonly found in elementary children. Students will observe exemplary programs, tutor children with special needs, and attend seminars on effective instructional techniques.

613. Human Growth and Development. (3) Theories of childhood and adolescent development, their relation to empirical research, and their educational implications. Consideration of the relation to learning of physical, intellectual, emotional, social, and moral development in childhood and adolescence.

651. Adolescent Psychology. (4) An introduction to theories of adolescent psychology as related to teaching and counseling in various settings. The readings emphasize researchers' suggestions for parenting, teaching, and counseling adolescents between the ages of thirteen and nineteen.

654. Methods and Materials. (3) Methods, materials, and techniques used in teaching particular secondary subjects (English, mathematics, science, second languages, social studies). Includes forty-hour field experience component.

661. Foundations of Education. (3) Philosophical, historical, and sociological foundations of education, including analysis of contemporary issues and problems.

674. Student Teaching Seminar. (1.5) Analysis and discussion of practical problems and issues in the teaching of particular secondary subjects (English, mathematics, science, second languages, social studies). Emphasis on the application of contemporary instructional methods and materials. Includes prior (intercession) twenty hours field experience requirement.

681. Special Needs Seminar. (1.5) Analysis and discussion of practical problems and issues in the teaching of special needs students in the secondary classroom. Topics include classroom management, reading and writing in the content area, inclusion, diversity, and evaluation. Meets four hours per week the first six weeks of the semester.

682. Reading and Writing in the Content Areas. (2) A survey of methods for teaching reading and writing to help students learn in the various content areas, and of techniques for adapting instruction to the literacy levels of students.

684. Creative Research Methodologies. (2) An investigation of source materials, printed and manuscript, and research methods which are applied to creative classroom experiences and the preparation of research papers in literature and social studies.

687. Tutoring Basic Writing. (2) Review of recent writing theory applicable to teaching basic writers (including the learning disabled and non-native speakers). Special attention to invention strategies and heuristic techniques. Includes experience with tutoring in the Writing Center. (No student allowed credit for both Education 387 and English 387.)
690. Methods and Materials for Teaching Foreign Language (K-6). (3) A survey of the basic materials, methods, and techniques of teaching foreign languages in the elementary and middle grades. Emphasis is placed on issues and problems involved in planning and implementing effective second language programs in grades K-6. Spring only.

693. Individual Study. (3) A project in an area of study not otherwise available in the department; permitted upon departmental approval of petition presented by a qualified student.

695. Teaching Exceptional Students. (3) An introduction to understanding exceptional students and the most effective teaching strategies for their inclusion in the regular classroom.

697. Research and Trends in the Teaching of Foreign Languages. (3) A study of current trends and issues in foreign language education. Research topics include language and linguistics, culture, and technology.

698. Seminar in Secondary Education. (1) An investigation of the issues that form the context for teaching in secondary schools.

For Graduate Students

705. Sociology of Education. (3) A study of contemporary society and education, including goals and values, institutional culture, and the teaching/learning process.

707. Sociology of Diverse Learners. (3) An examination of the impact of race, ethnicity, and social class on the schooling process, including consideration of philosophical, historical, and sociological issues.

708. School and Society. (3) A study of continuity and change in educational institutions, including analysis of teachers, students, curriculum, assessment and evaluation, and contemporary problems and reform movements.

712. Psychology of Diverse Learners. (3) An examination of group behavior, diverse learning styles, and the fundamental patterns of human development as they relate to classroom environments. Includes theories and processes of effective teaching and learning for all classrooms, including multicultural and inclusion settings.

714. Instructional Strategies and Evaluation. (3) Application of learning theories to instructional strategies and techniques and evaluation of various assessment techniques.

715. Descriptive Research. (3) Individual research project on a specific pedagogical topic developed through descriptive methods in a school setting. Includes definition of research problem, literature review, collection of field data, and reporting of results.

716. Professional Development. (3) Reflection and self-evaluation of student teaching experience and definition of professional goals. Includes review of research literature on best practices in teaching, critical examination of personal teaching experiences as related to the research literature, and development of a teaching portfolio.
721. Educational Research. (3) Theory, construction, and procedures of empirical research dealing with educational and counseling problems. Analysis and evaluation of research studies; experience in proposal writing, the design and execution of research studies.

731. Foundations of Curriculum Development. (3) Philosophical, psychological, and social influences on the school curriculum. Examination of both theoretical and practical curriculum patterns for the modern school. Processes of curriculum development, including the leadership function of administration and research.

733. Supervision of Instruction. (3) An analysis of various techniques of supervision: orientation of teachers, in-service education, classroom observation, individual follow-up conferences, ways to evaluate instruction, and methods for initiating changes.

735. Appraisal Procedures for Teachers. (3) An overview of the development, interpretation, and application of tests of achievement, aptitude, interest, personality, intelligence, and other inventories commonly employed by teachers. Educational tests and measurement in the classroom. Test construction, validity, and reliability.

751. Adolescent Psychology. (3) An introduction to theories of adolescent psychology as related to teaching and counseling in various settings. The readings emphasize researchers’ suggestions for parenting, teaching, and counseling adolescents between the ages of thirteen and nineteen.

758. Studies in Educational Leadership. (3) An examination of contemporary leadership theory and its various applications in education. Students engage in practical leadership exercises, read on a variety of leadership topics, and develop their own philosophy of leadership.

764. Seminar in Curriculum and Instruction. (3) Exploration of special topics in the field of curriculum and instruction.

781. Methodology and Research. (3) Advanced study of the methods and materials of a specific discipline (English, French, Spanish, social studies, mathematics, science) in the curriculum with special attention directed to the basic research in the discipline. Includes twenty hours field experience/project.

783. Readings and Research in Education. (1-3) Independent study and research on topics relevant to the student’s field of concentration which may include a special reading program in an area not covered by other courses or a special research project. Supervision by faculty members. Hours of credit to be determined prior to registration.

784. Research in Writing. (3) An investigation of selected topics related to the writing process.

785. The Teaching of Writing. (3) An examination of the theories and methods of instruction of writing.

787. Teaching Advanced Placement. (3) An investigation of the content of and the pedagogy appropriate to advanced placement courses in the various disciplines. Summer only.

788. Teaching Foreign Languages in the Elementary Grades. (3) An intensive period of observation and instruction in an elementary school setting with a foreign language specialist. Methods for development of listening, speaking, reading, writing, and cultural awareness using content-based instruction and thematic units.
English

Reynolda Campus

Chair Eric G. Wilson

Charles E. Taylor Professor of English James S. Hans

Professors Anne Boyle, Mary K. DeShazer, Andrew V. Ettin, Claudia Thomas Kairoff, Philip F. Kuberski, Barry G. Maine, William M. Moss, Gillian R. Overing, Gale Sigal

Poet-in-Residence and Associate Professor Jane Mead

Z. Smith Reynolds Foundation Fellow and Associate Professor Eric G. Wilson

Associate Professors Scott W. Klein, Lisa Sternlieb, Olga Valbuena

Assistant Professors Dean Franco, Jefferson Holdridge, John McNally, Jessica Richard

The courses for which credit may be earned toward the fulfillment of requirements for the MA degree offer opportunities for study and research in most of the major areas of both British and American literature and in the English language. The courses for graduates only (numbered above 700) stress independent study and research out of which theses may develop.

Candidates for degrees are required to have a reading knowledge of a modern foreign language. After consulting with his or her advisory committee, the student can meet this requirement by making a satisfactory grade in an advanced reading course in a foreign language taken in residence at the University or by satisfactorily passing a translation examination administered by the English department or the appropriate language department of the University. With approval of the department, a classical language may be substituted.

Students seeking graduate teacher certification are required to take six semester hours of courses in the Department of Education in addition to those for the MA degree in English.

With approval by the departmental graduate committee, students may take one or two related courses in other departments.

For Advanced Undergraduates and Graduate Students

(Not every course listed in this section is given every year.)

601. Individual Authors. (2) Study of selected work from an important American or British author.

602. Ideas in Literature. (3) Study of a significant literary theme in selected works.

604. History of the English Language. (3) A survey of the development of English syntax, morphology, and phonology from Old English to the present, with attention to vocabulary growth. Overing

605. Old English Language and Literature. (3) An introduction to the Old English language and a study of the historical and cultural background of Old English literature, including Anglo-Saxon and Viking art, runes, and Scandinavian mythology. Readings from Beowulf and selected poems and prose. Overing

607. Dante I. (1.5) A study of the Divine Comedy as epic, prophecy, autobiography, and poetic innovation, relating it to antiquity, Christianity, Dante’s European present (the birth of modern languages and new intellectual and poetic forms), and Dante’s own afterlife in the West. Mandelbaum
608. Dante II. (1.5) The completion of the course on the Divine Comedy as epic, prophecy, autobiography, and poetic innovation, relating it to antiquity, Christianity, Dante’s European present (the birth of modern languages and new intellectual and poetic forms), and Dante’s own afterlife in the West. Mandelbaum

610. The Medieval World. (3) Through the reading of primary texts, this course will examine theological, philosophical, and cultural assumptions of the Middle Ages. Topics may include Christian providential history, drama, devotional literature, the Franciscan controversy, domestic life, and Arthurian romance.

611. The Legend of Arthur. (3) The origin and development of the Arthurian legend in France and England, with emphasis on the works of Chretien de Troyes and Sir Thomas Malory. Sigal

612. Medieval Romance and Allegory. (3) The origin and development of poetic genres and lyric forms of Middle English. Sigal

615. Chaucer. (3) Emphasis on The Canterbury Tales and Troilus and Criseyde, with some attention to minor poems. Consideration of literary, social, religious, and philosophical background. Sigal

619. Virgil and His English Legacy. A study of Virgil’s Eclogues, Georgics, and selected passages of the Aeneid, and their influence on English literature, using translations and original works by writers of the sixteenth through the eighteenth centuries, including Spenser, Marlowe, Milton, Dryden, and Pope. Knowledge of Latin not required. Ettin

620. British Drama to 1642. (3) British drama from its beginnings to 1642, exclusive of Shakespeare. Representative cycle plays, moralities, Elizabethan and Jacobean tragedies, comedies, and tragicomedies.

623. Shakespeare. (3) Thirteen representative plays illustrating Shakespeare’s development as a poet and dramatist. Valbuena

625. Sixteenth-Century British Literature. (3) Concentration on the poetry of Spenser, Sidney, Shakespeare, Wyatt, and Drayton, with particular attention to sonnets and The Faerie Queene. Ettin

627. Milton. (3) The poetry and selected prose of John Milton, with emphasis on Paradise Lost. Ettin

630. British Literature of the Eighteenth Century. (3) Representative poetry and prose, exclusive of the novel, drawn from Addison, Steele, Defoe, Swift, Pope, Johnson, and Boswell. Consideration of cultural backgrounds and significant literary trends. Thomas

635. Eighteenth-Century British Fiction. (3) Primarily the fiction of Defoe, Richardson, Fielding, Smollett, Sterne, and Austen. Staff

636. Restoration and Eighteenth-Century British Drama. (3) British drama from 1660 to 1780, including representative plays by Dryden, Etherege, Wycherley, Congreve, Goldsmith, and Sheridan. Kairoff

637. Studies in Eighteenth-Century British Literature. (3) Selected topics in eighteenth-century literature. Consideration of texts and their cultural background. Staff

640. Women and Literature. (3) Selected topics. DeShazer
650. **British Romantic Poets.** (3) A review of the beginnings of Romanticism in British literature, followed by study of Wordsworth, Coleridge, Byron, Keats, and Shelley; collateral reading in the prose of the period. *Wilson*

653. **Nineteenth-Century British Fiction.** (3) Representative major works by Dickens, Eliot, Thackeray, Hardy, the Brontës, and others. *Sternlieb*

654. **Victorian Poetry.** (3) A study of the Brownings, Tennyson, Hopkins, and Arnold or another Victorian poet. *Staff*

657. **Studies in Chicano Literature.** (3) Writings by Americans of Mexican descent in relation to politics and history. Readings in literature, literary criticism, and socio-cultural analysis. *Franco*

658. **Postcolonial Literature.** (3) A survey of representative examples of postcolonial literature from geographically diverse writers, emphasizing issues of politics, nationalism, gender, and class.

659. **Studies in Postcolonial Literature.** (3) Examination of themes and issues in postcolonial literature, such as: globalization, postcolonialism and hybridity, feminism, nationalism, ethnic and religious conflict, the impact of the Cold War, and race and class.

660. **Studies in Victorian Literature.** (3) Selected topics such as development of genres, major authors and texts, cultural influences. Reading in poetry, fiction, autobiography, and other prose. *Staff*

661. **Literature and Science.** (3) Literature of and about science. Topics vary and may include literature and medicine, the two-culture debate, poetry and science, nature in literature, the body in literature.

662. **Irish Literature in the Twentieth Century.** (3) A study of modern Irish literature from the writers of the Irish Literary Renaissance to contemporary writers. Course consists of overviews of the period as well as specific considerations of genre and of individual writers. *Holdridge*

663. **Studies in Modernism.** Selected issues in Modernism. Interdisciplinary, comparative, and theoretical approaches to works and authors. *Kuberski*

664. **Studies in Literary Criticism.** (3) Consideration of certain figures and schools of thought significant in the history of literary criticism. *Hans*

665. **Twentieth-Century British Fiction.** (3) Representative major works by Conrad, Ford, Forster, Joyce, Lawrence, Woolf, and others. *Klein*

666. **James Joyce.** (3) The major works by Joyce, with an emphasis on *Ulysses*. *Klein*

667. **Twentieth-Century English Poetry.** (3) A study of twentieth-century poets of the English language, exclusive of the U.S. Poets will be read in relation to the literary and social history of the period. *Kuberski*

668. **Studies in Irish Literature.** (3) The development of Irish literature from the eighteenth century through the early twentieth century in historical perspective, with attention to issues of linguistic and national identity. *Holdridge*

669. **Modern Drama.** (3) Main currents in modern drama from nineteenth century realism and naturalism through symbolism and expressionism. After an introduction to European precursors, the course focuses on representative plays by Wilde, Shaw, Synge, Yeats, O’Neill, Eliot, Hellman, Wilder, Williams, Hansberry, and Miller. *Staff*

671. **American Ethnic Literature.** (3) Introduction to the field of American Ethnic literature, with special emphasis on post World War II formations of ethnic culture: Asian American,
Native American, African American, Latino, and Jewish American. The course highlights issues, themes, and stylistic innovations particular to each ethnic group and examines currents in the still developing American culture. *Franco*

672. **American Romanticism.** (3) Studies of Romanticism in American literature. Focus varies by topic and genre, to include such writers as Emerson, Thoreau, Hawthorne, Melville, Whitman, and Dickinson. *Moss*

673. **Literature and Film.** (3) Selected topics in the relationship between literature and film, such as adaptations of literary works, the study of narrative, and the development of literary and cinematic genres. *Sternlieb*

674. **American Fiction before 1865.** (3) Novels and short fiction by such writers as Brockden, Cooper, Irving, Poe, Hawthorne, Melville, Stowe, and Davis.

675. **American Drama.** (3) An historical overview of drama in America, covering such playwrights as Boucicault, O’Neill, Hellman, Wilder, Williams, Inge, Miller, Hansberry, Albee, Shepard, Norman, Mamet, and Wilson. *Staff*

676. **American Poetry before 1900.** (3) Readings and critical analysis of American poetry from its beginnings, including Bradstreet, Emerson, Longfellow, Melville, and Poe, with particular emphasis on Whitman and Dickinson. *Wilson*

677. **American Jewish Literature.** (3) A survey of writings on Jewish topics or experiences by American Jewish writers. The course explores cultural and generational conflicts, responses to social change, the impact of the Shoah (Holocaust) on American Jews, and the challenges of language and form posed by Jewish and non-Jewish artistic traditions. *Ettin*

678. **Literature of the American South.** (3) A study of Southern literature from its beginnings to the present, with emphasis upon such major writers as Tate, Warren, Faulkner, O’Connor, Welty, and Styron.

679. **Literary Forms of the American Personal Narrative.** (3) Reading and critical analysis of autobiographical texts in which the ideas, style, and point of view of the writer are examined to demonstrate how these works contribute to an understanding of pluralism in American culture. Representative authors include Douglass, Brent, Hurston, Wright, Kingston, Angelou, Wideman, Sarton, Hellman, and Dillard. *Staff*

680. **American Fiction from 1865 to 1915.** (3) Such writers as Twain, James, Howells, Crane, Dreiser, Wharton, and Cather. *Maine*

681. **Studies in African-American Literature.** (3) Reading and critical analysis of selected fiction, poetry, drama, and other writings by American authors of African descent. *Hill*

682. **Modern American Fiction, 1915 to 1965.** (3) Includes such writers as Cather, Lewis, Hemingway, Fitzgerald, Faulkner, Dos Passos, Wolfe, Baldwin, Ellison, Agee, O’Connor, Styron, Percy, and Pynchon. *Maine*

683, 684. **Theory and Practice of Poetry Writing.** (3, 3) Emphasis on reading and discussing student poems in terms of craftsmanship and general principles. *Mead*

685. **Twentieth-Century American Poetry.** (3) Readings of modern American poetry in relation to the literary and social history of the period. *Kuberski*

686. **Directed Reading.** (1-3) A tutorial in an area of study not otherwise provided by the department; granted upon departmental approval of petition presented by a qualified student. *Staff*
687. African-American Fiction. (3) Selected topics in the development of fiction by American writers of African descent. *Hill*

690. Structure of English. (3) An introduction to the principles and techniques of modern linguistics applied to contemporary American English. *Overing*

691. Studies in Postmodernism. (3) Interdisciplinary, comparative, and theoretical approaches to works and authors. *Kuberski*

694. Contemporary Drama. (3) This course considers experiments in form and substance in plays from *Godot* to the present. Readings will cover such playwrights as Beckett, Osborne, Pinter, Stoppard, Churchill, Wertenbaker, Albee, Shepard, Mamet, Wilson, Soyinka, and Fugard. *Staff*

695. Contemporary American Literature. (3) A study of post-World War II American poetry and fiction by such writers as Bellow, Gass, Barth, Pynchon, Morrison, Ashbery, Ammons, Bishop, and Rich. *Hans*

696. Contemporary British Fiction. (3) A study of the British novel and short story, with particular focus on the multicultural aspects of British life, including work by Rushdie, Amis, Winterson, and Ishiguro. *Klein*

698. Advanced Fiction Writing. (3) Primarily a short story workshop with class discussion on issues of craft, revision, and selected published stories. *McNally*

699. Advanced Expository Writing. (3) Training and practice in writing expository prose at a level appropriate for publication in various print media, primarily magazines. *Catansoso*

For Graduate Students
(Not every course listed in this section is given every year, but at least four are offered in the regular academic year.)

710. Early Medieval Narrative. (3) A variety of forms of early medieval narrative (history, saga, chronicle, poetry, hagiography), with a focus on issues of genre and narrative form, connections between story and history, and the text’s relation to the culture that produced it. Emphasis on interdisciplinary viewpoints (artistic, archaeological, geographic), and on contemporary narrative theory. *Overing*

711. Studies in the Arthurian Legend. (3) Emphasis on the origin and developments of the Arthurian legend in England and France, with primary focus on Malory’s *Le Morte d’Arthur*. Attention to social and intellectual backgrounds. *Sigal*

712. Studies in Medieval Literature: Romance and Identity. (3) A diverse corpus of medieval poetry, both lyric and narrative, is explored in an effort to trace the origin and evolution of the idea and meaning of “romance,” a term signifying, for the medieval audience, narrative poetry in the vernacular, and, for our purposes, that uniquely new concept of ennobling love that emerged in the twelfth century. *Sigal*

715. Studies in Chaucer. (3) Emphasis on selected Canterbury Tales, Troilus and Criseyde, and the longer minor works, with attention to social, critical, and intellectual background. Lectures, reports, discussions, and a critical paper. *Sigal*
720. Renaissance Drama. (3) Using an historical approach, this seminar examines the relationship between the theater as an institution and centers of authority during the Tudor and Stuart periods. The plays—tragedies, comedies, tragicomedies—will be approached as the products of a dynamic exchange between individual authors and the larger political and social concerns of the period.

721. Studies in Spenser. (3) Emphasis on The Faerie Queene; attention to the minor works; intellectual and critical background. Lectures, discussions, and class papers. Ettin

722. Studies in Sixteenth-Century British Literature. (3) Introduction to critical and scholarly methodology for the study of the literature; particular emphasis on Spenser’s Faerie Queene and Sidney’s Arcadia. Ettin

723. Studies in Shakespeare. (3) Representative text from all genres, examined in light of critical methodologies in the field of Shakespeare studies. Emphasis on reading primary sources as well as on discussion of the impact that historical, cultural, and religious developments had on Shakespeare, the theater, and the thematics of his plays. Valbuena

725. Studies in Seventeenth-Century British Literature. (3) Non-dramatic literature of the seventeenth century, exclusive of Milton. Emphasis on selected major writers. Lectures, discussions, and presentation of studies by members of the class. Ettin

733. Eighteenth-Century British Fiction. (3) A study of two major British novelists of the eighteenth century. Lectures, reports, critical papers. Authors for study chosen from the following: Defoe, Richardson, Fielding, Smollet, and Austen. Staff

743. Nineteenth-Century British Fiction. (3) A study of one or more major British novelists of the nineteenth century. Lectures, reports, discussions, and a critical paper. Authors for study chosen from the following: Austen, Dickens, Thackeray, Eliot, and Hardy. Sternlieb

745. British Poetry of the Nineteenth and Twentieth Centuries. (3) A study of several British poets chosen from the major Romantics, Tennyson, Browning, Hardy, and Yeats. Wilson

746. Studies in British Romanticism. (3) Examination of major writers, topics, and/or theoretical issues from the late eighteenth and early nineteenth centuries. Wilson

757. American Poetry. (3) Studies of the poetry and poetic theory of three major American writers in the nineteenth and twentieth centuries. Writers chosen from the following: Whitman, Dickinson, Frost, Eliot, Stevens, or Williams. Discussions, reports, and a critical paper. Staff

765. Literary Criticism. (3) A review of historically significant problems in literary criticism, followed by study of the principal schools of twentieth century critical thought. Lectures, reports, discussions, and a paper of criticism. Hans

766. Studies in Twentieth-Century British Literature. (3) Examination of major writers, topics and/or theoretical issues in twentieth-century British literature. In addition to fiction, the course will focus on drama, theory, prose readings, and poetry. Klein, Kuberski
767. Twentieth-Century British Fiction. (3) A study of one or more of the major British novelists of the twentieth century. Authors chosen from among the following: Conrad, Ford, Forster, Joyce, Lawrence, or Woolf. **Klein**

768. Irish Literature. (3) A study of major themes, theories, individual authors, or periods, which might include discussions of mythology, folklore, landscape, poetics, narrative strategies, gender, and politics. **Holdridge**

771. American Ethnic Literature. (3) Examination of how ethnic writers narrate cultural histories and respond to and represent the ambiguity of cultural location. Literary topics include slavery, exile, the Holocaust, immigration, assimilation, and versions of the American Dream. **Franco**

772. Studies in American Romanticism. (3) Writers of the mid-nineteenth century, including Emerson, Thoreau, Hawthorne, and Melville. **Moss**

774. American Fiction Before 1865. (3) A study of novels and short fiction by such writers as Brown, Cooper, Irving, Poe, Hawthorne, Melville, Stowe, and Davis. **Moss**

776. American Poetry Before 1900. (3) Close reading and critical analysis of selected American poets, such as Bryant, Longfellow, Poe, Emerson, Whitman, and Dickinson. **Moss**

779. Autobiographical Voices: Race, Gender, Self-Portraiture. (3) Using an historical and critical approach, this seminar examines autobiography as an activity which combines history, literary art, and self-revelation. Lectures, reports, discussions, a critical journal, a personal narrative, and a critical paper. Authors for study chosen from the following: Douglass, Brent, Hurston, Wright, Angelou, Crews, Dillard, Moody, Malcolm X, Kingston, Wideman, or Sarton. **Staff**

780. Studies in American Fiction from 1865 to 1915. (3) A study of the principal fiction of one or more major American writers of the late nineteenth and early twentieth centuries. Lectures, seminar reports, and a research paper. Authors for study chosen from the following: Twain, James, Howells, Adams, Crane, Dreiser, Wharton, or Cather. **Maine**

781. African-American Literature and the American Tradition. (3) Critical readings of selected works of major American writers of African descent within the contexts of the African-American and American literary and social traditions. The course covers such genres as autobiography, fiction, drama, and poetry. Lectures, reports, discussions, and a critical paper. **Staff**

782. Studies in American Fiction from 1915 to 1965. (3) A study of the principal fiction of one or more major American writers of the twentieth century. Writers are chosen from the following: Cather, Lewis, Hemingway, Fitzgerald, Faulkner, Dos Passos, Wolfe, Baldwin, Ellison, Agee, O'Connor, Percy, or Pynchon. **Maine**

783. Contemporary American Fiction. (3) A seminar devoted to the close study of some of the most important novels produced in the United States since World War II. **Hans**

784. Contemporary American Poetry. (3) A seminar devoted to the close study of some of the most important poems written in America since World War II. **Hans**

789. Linguistics in Literature. (3) Examination of theories of grammar and attitudes toward the English language reflected in the literature of selected periods. **Overing**

791, 792. Thesis Research. (1-9) **Staff**
The Department of Health and Exercise Science offers a graduate program leading to the master of science degree. This program offers specialization in the area of health and exercise science and is designed for those who are interested in careers in research, preventive, and rehabilitative programs, and/or further graduate study.

Candidates for the health and exercise science program are not required to have a specific undergraduate major or minor. However, an undergraduate concentration in the sciences is preferred. Candidates for the program generally pursue research careers in exercise science laboratories (exercise physiology, biomechanics, or rehabilitation), and/or direct programs of exercise training or rehabilitation (YMCA’s, corporate fitness programs, and cardiac rehabilitation). The prerequisites for this program include course work in human anatomy, human physiology, physiology of exercise, and biomechanics. These courses should be completed before admission to the program, but with departmental approval some of them may be completed during the regular course of study. None of the prerequisites may apply toward the graduate degree. All students in the program are required to take the following courses: 660, 675, 715, 721, 733, 761, 763, 765, 783-784 and 791-792. Students can normally expect to spend two years in this program. The first year is devoted to required course work and the identification of a thesis topic. The research and data collection for the thesis are usually completed in the second year. The second year also allows an opportunity for elective coursework outside the department and students may elect a variety of more specialized courses in areas of particular interest.

The Department of Health and Exercise Science supports the Healthy Exercise and Lifestyle Programs (HELPs), a chronic disease prevention program for the local community. As part of the course work in Health and Exercise Science 761 and 765, graduate students serve an internship in HELPS to gain practical experience as clinical exercise specialists. After serving an internship with HELPS during the first academic year, each student will have the opportunity to participate in the workshop and certification sessions for exercise specialists which are offered through the American College of Sports Medicine (ACSM). In the first year, students are expected to teach one departmental laboratory course each semester, Exercise for Health, a one-credit course for first-year undergraduate students. This experience fulfills the departmental language skill requirement for graduation.

The Department of Health and Exercise Science began offering graduate study in 1967. Departmental graduate committee: Marsh (chair), Berry, Brubaker, Messier, Mihalko, Miller, Nixon, Rejeski, Ribisl.
For Advanced Undergraduates and Graduate Students

650. Human Physiology. (3) A lecture course that presents the basic principles and concepts of the function of selected systems of the human body, with emphasis on the muscular, cardiovascular, pulmonary, and nervous systems. Berry, Brubaker

651. Nutrition and Weight Control. (3) A lecture/laboratory course that presents the principles of proper nutrition including an understanding of the basic foodstuffs and nutrients as well as the influence of genetics, eating behavior, and activity patterns on performance, energy balance, and weight control. Laboratory experiences are focused on intervention in obesity and coronary heart disease through diet analysis, methods of diet prescription, and behavior modification. Miller

652. Human Gross Anatomy. (4) A lecture/laboratory course on the structure and function of the human body. Laboratory experiences are devoted to the dissection and study of the human musculoskeletal, neuromuscular, and vascular systems. Marsh, Messier

653. Physiology of Exercise. (3) A lecture course that presents the concepts and applications of the physiological response of the human body to physical activity. The acute and chronic responses of the muscular and cardiorespiratory systems to exercise are examined. Other topics include exercise and coronary disease, strength and endurance training, somatotype and body composition, gender-related differences, and environmental influences. P—650 or POI. Miller, Nixon

660. Epidemiology. (3) An introduction to basic determinants of the incidence of chronic disease in the population, and development of an understanding of individual, community, and environmental approaches to promoting healthful lifestyles in youth, adults, and elderly populations. Issues are analyzed by formal statistical modeling. Nixon

670. Biomechanics of Human Movement. (3) Study of the mechanical principles which influence human movement, sport technique, and equipment design. Marsh, Messier

675. Advanced Exercise Physiology. (3) A lecture course dealing with the study of physiological and biochemical adaptations of the human body to exercise, with special emphasis on substrate metabolism, ventilation and respiration, oxygen transport, and muscle physiology. Berry

682. Independent Study. (1-3) Literature reviews and/or laboratory research performed on an individual basis under the supervision of a faculty member. Staff

For Graduate Students

715. Experimental Design. (3) A study of the various types of research relevant to health and exercise science. While attention is given to topics such as statistical treatment of data, the primary emphasis involves discussion concerning threats to internal and external validity for experimental and quasi-experimental designs. In conjunction with a sound methodological approach, practical experiences are provided in the preparation and presentation of thesis proposals. Rejeski

721. Data Analysis and Interpretation. (3) The application of basic statistical techniques in the analysis and interpretation of data in scientific research. Topics include descriptive statistics, simple linear and multiple correlation/regression analysis, t-tests, analysis of variance and covariance, and non-parametric statistics. Berry

733. Health Psychology. (3) A seminar on current topics in health psychology with a focus on wellness programs and rehabilitative medicine. Mihalko
761. Cardiopulmonary Disease Management. (3) A lecture/laboratory class that examines the physiologic, pathologic, and pharmacologic considerations of managing patients with cardiovascular and pulmonary disease. Special emphasis is placed on learning diagnostic procedures, interventions, and therapies, particularly models for cardiac and pulmonary rehabilitation. Brubaker

763. Advanced Biomechanics. (3) An in-depth study of the mechanical principles that influence human movement. Topics include the study of kinetics, kinematics, cinematography, sport shoe design, and skeletal biomechanics. P—Anatomy, kinesiology, physics, or POL. Messier

765. Graded Exercise Testing and Exercise Prescription. (3) The study of the rationale for the use of graded exercise testing in the evaluation of functional work capacity and prescription of exercise. Lectures include the analysis of different modes of evaluation: treadmill, bicycle ergometer, arm ergometer, and field testing, with the application of the results in the evaluation of normal and cardiac patients and prescription of exercise for special populations. Laboratory experiences include the use of electrocardiographs, ergometers, and metabolic analyzers in the assessment of functional capacity. Brubaker

780. Advanced Topics in Exercise and Sport Science. (3) This course is divided into two or more content areas to allow an in-depth treatment of selected topics that are not a regular part of required course work. Topics are chosen from the following areas: anatomy, biomechanics, computer analysis, multivariate statistics, and physiology of exercise. Seminar and/or laboratory approach. Staff

782. Independent Study in Health and Exercise Science. (1-3) Literature and/or laboratory research performed on an individual basis under the supervision of a faculty member. Staff

783, 784. Seminar in Health and Exercise Science. (1,1) A seminar class designed to bring graduate students and faculty together on a regular basis to discuss research proposals, research design and studies, results of research, and current topics in health and exercise science. Talks by invited or visiting speakers will be included as seminar sessions. Graduate students receive reading and work assignments related to the material presented in the seminar. May be repeated for credit. Staff

791, 792. Thesis Research. (1-9) Staff
Health Sciences Research

Bowman Gray Campus

Chair Gregory L. Burke

Associate Professors Walter Ambrosius, Ronny A. Bell, Douglas Easterling, Edward Ip, Sharon A. Jackson, Claudine Legault, Michelle J. Naughton, Barbara Nicklas, Beth A. Reboussin, David M. Reboussin, Beverly Snively, Mark Wolfson, Mara Vitolins, Jianfeng Xu

Assistant Professors Alain G. Bertoni, Denise Bonds, G. Haiying Chen, John Chen, Laura H. Coker, Kristie L. Foley, Capri Foy, Fang-Chi Hsu, Ann Lambros, Wei Lang, Carl Langefeld, Yongmei Liu, Janeen Manuel, Scott Rhodes, Alison Snow Jones, Janet Tooze

Research Assistant Professor Gregory W. Evans

Associate Faculty David M. Herrington, Stephen R. Rapp, Jeff D. Williamson

The master of science degree in health sciences research is administered through the Department of Public Health Sciences. This program is open to individuals with advanced degrees, such as the MD, DVM, ScD, PhD or DDS, who are seeking training in clinical and outcomes research.

The program is also appropriate for qualified applicants with at least a BA or BS in a social science, public health, or other health-related area. Previous experience in a health-related field is highly desirable.

The graduate program is built on the foundations of epidemiology, biostatistics, and health services research. Coursework exposes students to the principle steps in the process of scientific investigation. The objectives of the program are to: 1) provide students with training in conceptual/theoretical frameworks, research methodologies, and statistical methods essential to the design and conduct of clinical and population research; and 2) provide training in the measurement of health outcomes, such as morbidity and mortality, health-related quality of life, medical treatment or intervention effectiveness, health services utilization, and health economics. In addition to coursework, all students complete a thesis project under the direction of a thesis committee. Students may initiate original data collection or analyze existing data sets.

All applicants must provide GRE or MCAT scores. For an applicant already affiliated with Wake Forest University as faculty, staff, or student, a letter of recommendation from the chair and/or faculty adviser of the applicant’s major department is required.

While a minimum of twelve months of full-time work or its equivalent in residence is required for the master’s degree, this program will normally require two years. It is feasible to extend the program from two to three years. Students may matriculate only at the beginning of the fall semester each year.

The master of science degree in health sciences research was initiated in the fall of 2005, and replaces the Clinical Epidemiology and Health Services Research Master of Science program. It is one of a small number of similarly structured master’s degree programs in the United States, placing it on the cutting edge of graduate education.
710. Introduction to Health Services Research and the Health Care System. (3) This course provides an introduction to health services research and an overview of the changing health care delivery system in both the public and private sectors. Students are provided with information about the organization and delivery of health care services in the United States, international systems of health care, and health care reform, including health care policies enacted to promote the health of the public. P—POI. Staff

712. Medical Outcomes. (2) Introduces students to theory and methodologies used to evaluate the impact and effectiveness of health care outcomes. Emphasis is placed on how to assess a range of health outcomes including: morbidity and mortality, adverse effects, quality of care, compliance, health-related quality of life, and patient satisfaction. P—POI. Staff

720. Introduction to Epidemiology. (3) An introduction to the history, basic concepts, and methods of epidemiology. Topics include measurement of disease prevalence, incidence, effect, and sensitivity/specificity analyses. The following study designs are reviewed: prospective, case-comparison, cross-sectional, and clinical trials. P—POI. Staff

721. Epidemiology Laboratory. (1) This course accompanies Health Sciences Research 720, providing a structured learning environment for the completion of laboratory projects that complement the basic material of Health Sciences Research 720. Projects include a review of the pertinent literature related to the distribution and determinants of diseases in human populations. Others involve calculations of rates and proportions, effect size, and measures of association. C—Health Sciences Research 720 or POI. Staff

730. Introduction to Statistics. (4) Introduction to statistical concepts and basic methodologies that are prevalent in biomedical literature. It includes discussion of such topics as descriptive statistics, probability, sampling distributions, hypothesis testing, simple linear regression, correlation, one-way analysis of variance, categorical data analysis, and nonparametric methods. Staff

732. Applied Linear Models. (4) Topics include simple and multiple linear regression, analysis of variance and covariance, and repeated measures analysis. Emphasis is given to proper application and interpretation of statistical methods and results. P—Health Sciences Research 730 or POI. Staff.

734. Applied Statistical Methods. (3) Provides students with advanced knowledge of statistical techniques to analyze health outcomes data. Topics covered include categorical data and survival analysis with detailed overviews of logistic regression and Cox’s proportional hazards regression. Emphasis is given to proper application and interpretation of statistical methods and results. P—Health Sciences Research 730 and 732 or POI. Staff.

740. Research Design and Methodology. (4) Provides students with detailed knowledge of research design methodologies commonly used in health research. Topics covered include: an overview of the scientific method, ethical issues in research; observational designs; quasi-experimental designs; clinical trials; surveys, qualitative methodologies, data collection, and instrument design. P- POI. Staff

741. Research Grant Preparation. (3) Provides students with the knowledge and skills to develop grant proposals to pursue funding in their areas of interest. Topics covered include: the role of external funding in biomedical research; how to identify public and private sources of funding; required components in any type of grant submission; and human subjects and budgeting considerations. During the course, students develop a research proposal for peer review and critical discussion. P—POI. Staff
763. **Topics in Health Sciences Research.** (1-3) This course includes a wide range of topics, including the design of field and community studies, behavioral and social factors in health, quality of life issues, health policy and analysis, and health services research, among others. P—POI. *Staff*

Interdisciplinary Graduate Track in Structural and Computational Biophysics

Departments of Biochemistry, Chemistry, Computer Science, and Physics Track

Director Jacquelyn S. Fetrow
Reynolds Professor Jacquelyn S. Fetrow
Professor Emeritus George M. Holzwarth
Professors Keith D. Bonin, Larry W. Daniel, Susan M. Hutson, Mark O. Lively, Douglas S. Lyles, Linda C. McPhail, Lawrence L. Rudel, Alan J. Townsend
Associate Professors Ulrich Bierbach, Roy R. Hantgan, David J. John, Daniel B. Kim-Shapiro, S. Bruce King, Charles S. Morrow, Fred W. Perrino, Leslie B. Poole, Stan J. Thomas, Suzy V. Torti
Assistant Professors Rebecca Alexander, Bernard A. Brown, Martin Guthold, Thomas Hollis, David Horita, W. Todd Lowther, Jed Macosko, V. Paul Pauca, Fred Salsbury
Research Assistant Professor Derek Parsonage
Affiliated Faculty in Non-participating Departments
Professors Edward E. Allen (Mathematics), James F. Curran (Biology), Gloria K. Muday (Biology)
Associate Professors Brian W. Tague (Biology), Peter Santago (Biomedical Engineering)
Instructor Ersin Bayram

The Interdisciplinary Graduate Track in Structural and Computational Biophysics (SCB) is designed to meet the need for scientists and educators with broad, interdisciplinary training in the quantitative biological, biochemical, and biomedical sciences. Students who successfully complete the SCB Track and degree requirements will receive a certificate in Structural and Computational Biophysics, as well as the degree in the department in which they matriculate. The Track is implemented by collaboration among the departments of Biochemistry, Chemistry, Computer Science, and Physics at Wake Forest University.

Students are admitted to the Interdisciplinary SCB Graduate Track at the same time, or after, they are admitted to the graduate program in the department to which they apply. They can also be admitted at any time during their first year. Admission to the Track is by permission of the Track Director or Track Advisory Committee. Prior to admission, it is recommended that applicants complete coursework in introductory chemistry, introductory biology, introductory biochemistry, molecular biology, or cell biology, a calculus-based physics course, and programming in a high-level language; however, all applicants should meet the prerequisites for the individual graduate degree program to which they are applying (Physics, Chemistry, Biochemistry, and Molecular Biology or Computer Science).

Students in the Interdisciplinary Graduate SCB Track must complete all graduate degree requirements in the individual department to which they were admitted. (The official degree
requirements for the Ph.D. in Physics, Chemistry, Biochemistry and Molecular Biology or M.S. in Computer Science are described under the department listing.) In addition, students in the SCB Track must complete at least 14 hours of graduate course work (including a general, introductory SCB course) and one hour of journal club credit. Students must take at least two graduate hours in each of the curriculum areas: Chemistry/Biochemistry, Computer Science, and Biophysics. At least one course must be at the 700 level. All students in the SCB Track must complete and defend a dissertation or MS thesis that involves original, interdisciplinary research in the area of structural and computational biology or biophysics, broadly defined. The dissertation committee will consist of members from at least three participating SCB departments. All students must successfully complete a course in scientific ethics. Each semester, four seminars from the participating departments will be designated as SCB seminars. Students in the Track are required to attend these seminars.

Students in the SCB Track have access to state-of-the-art equipment and facilities in multiple departments, including the Wake Forest Structural Biology Facility (www.csb.wfu.edu), the DEAC Linux cluster (hwww.deac.wfu.edu), and well-equipped research laboratories in biophysics, biochemistry, computational biology, and biomedical engineering.

The Interdisciplinary Graduate Track in Structural and Computational Biophysics began in 2005. Current information on the program and links to faculty research interests can be accessed at www.scb.wfu.edu.

Courses currently approved for the Interdisciplinary Graduate Track in Structural and Computational Biophysics at Wake Forest University (Other courses may be allowed with prior approval by the SCB Track Advisory Committee. Course descriptions can be found under the Department which administers the course.)

SCB-specific courses. *(Course numbers to be assigned.)*

SCB course. Structural and computational biophysics journal club. (1)

SCB course. Introduction to structural and computational biophysics. (3)

Taught every fall.

Curriculum Area 1. Chemistry/Biochemistry

General prerequisites: Two semesters of undergraduate chemistry and one semester of undergraduate biochemistry or molecular biology; one semester of organic chemistry is considered ideal, but is not required for most courses. (If additional prerequisites are required, they are listed individually by course.)

Chemistry 641. Fundamentals of Physical Chemistry. (3 or 4)

Chemistry/Biology 670. Biochemistry: Macromolecules and Metabolism. (3)

Chemistry 671. Biochemistry Laboratory: Macromolecules and Metabolism. (1)

Chemistry 672. Biochemistry: Protein and Nucleic Acid Structure and Function. (3)

Biochemistry 705. Biochemistry I. (4) Taught every fall.

Biochemistry 706. Biochemistry II. (4) Taught every spring.

Biochemistry 707. Biochemical Techniques. (2) Taught every summer.

Biochemistry 716. Special Topics in Biochemistry: Macromolecular X-ray Crystallography. (2) P—one semester graduate level biochemistry.
Biochemistry 731 or Biology 672. Molecular Biology. (3 or 4)
Chemistry 751. Biochemistry of Nucleic Acids. (3)
Chemistry 752. Protein Chemistry: Structures, Methods and Molecular Mechanisms. (3)
Chemistry 756. Biomolecular NMR. (1.5) P—POI.

Curriculum Area 2. Physics

General prerequisites: Two semesters of undergraduate physics. (If additional prerequisites are required, they are listed individually by course.)

Physics 607. Biophysics. (3)

Physics 625. Biophysical Methods Laboratory. (1) C—Physics 607.

Physics 685. Bioinformatics. (3) P—Introductory courses in biology, chemistry, and molecular biology or biochemistry or permission of instructor; also listed as CSC 685, though requirements and prerequisites are different.

Physics 620. Physics of Biological Macromolecules. (3) P—Physics 651 or Chemistry 641, or POI.

Physics 623. Computational Biophysics Laboratory. (1) C—Physics 620 or POI.

Category 3. Computer Science/Math

General prerequisites: Programming in a high level language. (If additional prerequisites are required, they are listed individually by course.)

Computer Science 621. Database Management Systems. (3)

Computer Science 631. Object-oriented Software Engineering. (3)

Computer Science 646. Parallel Computation. (3)

Computer Science 652. Numerical Linear Algebra. (3)

Computer Science 655. Introduction to Numerical Methods. (3)

Computer Science 671. Artificial Intelligence. (3)

Computer Science 685. Bioinformatics. (3)

Computer Science 721. Theory of Algorithms. (3)

Computer Science 753. Nonlinear Optimization. (3) P—Computer Science 655.

The liberal studies program (LS) enables the college-educated adult student to pursue graduate study in the liberal arts. The coursework consists of both courses designed specifically for the liberal studies program and courses available in the University curriculum. Students are encouraged to use this flexibility to tailor interdisciplinary programs to suit their particular needs and interests.

Liberal studies courses numbered above 700 are specially designed interdisciplinary graduate seminars for students enrolled for the master of liberal arts degree (MALS). The thirty hours required for the MALS degree must include a minimum of four liberal studies courses and Liberal Studies 791, Thesis Research. Students may elect a maximum of five departmental 600- and 700-level courses that carry three hours of graduate credit; no more than four 600-level courses may count toward the MALS degree. Directed study courses and MLS 693/694 do not fulfill the requirement of four liberal studies courses. The following list of courses is a representative rather than a complete list.

703. Seeing Ourselves as Others See Us: The United States and United Kingdom Compared. (3) This course examines the similarities and differences that help define the two great western democracies and uses those definitions to explore the nature of the contemporary United States and overseas reactions to it. The history of and changing relationship between the United States and the United Kingdom are explored. “U.S. exceptionalism” and “the peculiarities of the English” are examined. The course draws parallels and lessons from the comparison of class systems, gender patterns and immigration, and it examines the nature of shared political projects from Reagan-Thatcher to Bush-Blair. Coates

736. Architecture, Memory, and Meaning: The World Trade Center and Memorial Architecture in America. (3) This seminar examines the role of architecture in the creation of memorials and the symbolic roles that memorials play in creating environments and in shaping public memory. Students examine the case of New York City and the debates surrounding the plan to incorporate a memorial into the World Trade Center site. Phillips

777. Paradise or Prison: Utopian Novels of the 20th Century. (3) This course focuses on famous literary novels of the 20th century that speak to the human desire to maximize potential. Through writing, discussion, and presentations, students explore some of the ramifications inherent in the “advances” made possible in the 20th century. Novels to be studied include works by Bellamy, Zamyatin, Freud, Skinner, Burgess and Quinn. Schirillo

786. Directed Study. (3) Working with a faculty advisor, the student completes a special reading project in an area not covered in regular courses or a special research project not related to the master’s thesis. A student who wishes to enroll must submit the Directed Study Form, signed by the advisor, to the program director. May be repeated once for credit with the permission of the program director. Staff.

791. Thesis Research. (3) Staff

801. Changing World, Challenging Decisions: The History of Bioethics. (3) This course examines several events which were decisive in the emergence of contemporary biomedical ethics. The immediate repercussions of each event for the public and biomedical science, and
the wide ranging consequences resulting from each event are discussed. The course includes guest lecturers from the fields of medicine, law, communication, philosophy, and biomedical science. Melson

802. Shakespeare: His Comedies, Tragedies, and Their Sources. (3) This course provides a deeper appreciation of Shakespeare’s dramatic themes through consideration of his narrative and dramatic sources. Sources are examined alongside the plays. Works studied include: *The Merchant of Venice, Twelfth Night, Measure for Measure, Hamlet, Othello, and Macbeth.* Valbuena

804. Health, Environment, and the Active Lifestyle. (3) This course examines public health policies for physical activity. Students consider how policies can be implemented and what successful implementation would mean to our society. Components of exercise programs are explored and consideration is given to developing specific exercise programs that improve health, fitness, and performance. Health and social concerns are explored on both local and international levels. Miller

Mathematics

Reynolda Campus

Chair Stephen B. Robinson
Reynolds Professor Robert J. Plemmons
Sterge Faculty Fellow and Associate Professor Hugh N. Howards
Associate Professor Miaohua Jiang
Sterge Faculty Fellow and Assistant Professor Kenneth S. Berenhaut
Assistant Professors Sarah Raynor, Marielba Rojas, and Greg Warrington

The department offers a program of study leading to the master of arts degree in mathematics. The program is designed to accommodate students seeking either a terminal master’s degree or preparation for PhD work.

To obtain the MA in one year, a graduate student must present evidence of having completed the work required of an undergraduate who majors in mathematics in a fully accredited college or university. Such a major is understood to include at least thirty-three semester hours of mathematics, of which at least eighteen require as prerequisite one year of calculus. Students who are admitted with less than the level of preparation specified should expect to take additional courses at the 600-level and remain in residence for more than one year.

The requirements for the MA degree may be met in either of two ways, depending upon whether or not a thesis is submitted. If a thesis is written, thirty semester hours of course work, including Mathematics 791, 792, and at least four additional courses numbered above 700, are required for the MA degree. If a thesis is not written, thirty-six semester hours of coursework, including at least five courses numbered above 700, are required for the MA degree. An advanced course is required in each of the areas of analysis, algebra, and topology; normally this requirement is met with the courses 711, 721, 731. With the approval of the graduate adviser, graduate courses may be taken in related areas to fulfill requirements; however, no more than six such hours may count toward the requirements for either the thesis or non-thesis option.

Students desiring to use work taken in the department for graduate teacher certification should consult the Department of Education before applying for candidacy.
Computers are used in mathematics in conjunction with course work and research. The department utilizes UNIX-based workstations and fileservers along with microcomputers connected to local and wide-area networks. Access is available to the University’s computing facilities, supercomputers at the North Carolina Supercomputing Center and other specialized computing equipment.

For Advanced Undergraduates and Graduate Students

601. Vector Analysis. (1.5) Vector functions, partial derivatives, line and multiple integrals, Green’s theorem, Stokes’ theorem, divergence theorem. Not to be counted toward any major offered by the department, except for the major in mathematical business.

602. Matrix Algebra. (1.5) Matrices, determinants, solutions of linear equations, special matrices, eigenvalues and eigenvectors of matrices. Not to be counted toward any major offered by the department, except for the major in mathematical business. Credit not allowed for both Mathematics 121 and 602.

603. Complex Variables. (1.5) Topics in analytic function theory, Cauchy’s theorem, Taylor and Laurent series, residues. Not to be counted toward any major offered by the department. Credit not allowed for both 603 and 617.

604. Applied Partial Differential Equations. (1.5) The separation of variables technique for the solution of the wave, heat, Laplace, and other partial differential equations with the related study of special functions and Fourier series. Not to be counted toward any major offered by the department.

610. Advanced Calculus. (3) A rigorous proof-oriented development of important ideas in calculus. Limits and continuity, sequences and series, pointwise and uniform convergence, derivatives and integrals. Credit not allowed for both Mathematics 610 and 611. May not be used toward any graduate degree offered by the department.

611, 612. Introductory Real Analysis I, II. (3, 3) Limits and continuity in metric spaces, sequences and series, differentiation and Riemann-Stieltjes integration, uniform convergence, power series and Fourier series, differentiation of vector functions, implicit and inverse function theorems. Credit not allowed for both Mathematics 610 and 611.

617. Complex Analysis I. (3) Analytic functions. Cauchy’s theorem and its consequences, power series, and residue calculus. Credit not allowed for both 603 and 617.

622. Modern Algebra II. (3) A continuation of modern abstract algebra through the study of additional properties of groups, rings, and fields.

624. Linear Algebra II. (3) A thorough treatment of vector spaces and linear transformations over an arbitrary field, canonical forms, inner product spaces, and linear groups.

626. Numerical Linear Algebra. (3) Numerical methods for solving matrix and related problems in science and engineering. Topics include systems of linear equations, least squares methods, and eigenvalue computations. Special emphasis given to parallel matrix computations. Beginning knowledge of a programming language such as Pascal, FORTRAN, or C is required. Credit not allowed for both Mathematics 626 and Computer Science 652.
631. **Geometry.** (3) An introduction to axiomatic geometry including a comparison of Euclidean and non-Euclidean geometries.

634. **Differential Geometry.** (3) Introduction to the theory of curves and surfaces in two and three dimensional space including such topics as curvature, geodesics, and minimal surfaces.

645, 646. **Elementary Theory of Numbers I, II.** (3, 3) Properties of integers, including congruences, primitive roots, quadratic residues, perfect numbers, Pythagorean triples, sums of squares, continued fractions, Fermat’s Last Theorem, and the Prime Number Theorem.

647. **Graph Theory.** (3) Paths, circuits, trees, planar graphs, spanning trees, graph coloring, perfect graphs, Ramsey theory, directed graphs, enumeration of graphs and graph theoretic algorithms.

648, 649. **Combinatorial Analysis I, II.** (3, 3) Enumeration techniques, generating functions, recurrence formulas, the principle of inclusion and exclusion, Polya theory, graph theory, combinatorial algorithms, partially ordered sets, designs, Ramsey theory, symmetric functions, and Schur functions.

652. **Partial Differential Equations.** (3) A detailed study of partial differential equations, including the heat, wave, and Laplace equations, using methods such as separation of variables, characteristics, Green’s functions, and the maximum principle.

653. **Mathematical Models.** (3) Development and application of probabilistic and deterministic models. Emphasis given to constructing models that represent systems in the social, behavioral, and management sciences.

655. **Introduction to Numerical Methods.** (3) Numerical computations on modern computer architectures; floating point arithmetic and round-off error. Programming in a scientific/engineering language (C or FORTRAN). Algorithms and computer techniques for the solution of problems such as roots of functions, approximation, integration, systems of linear equations and least squares methods. Credit not allowed for both Mathematics 655 and Computer Science 655.

656. **Statistical Methods.** (3) A study of statistical methods that have proven useful in many different disciplines. These methods include tests of model assumptions, regression, general linear models, nonparametric alternatives, and analysis of data collected over time. Knowledge of matrix algebra is desirable but not necessary.

657, 658. **Mathematical Statistics I, II.** (3, 3) Probability distributions, mathematical expectation, sampling distributions, estimation and testing of hypotheses, regression, correlation, and analysis of variance.

659. **Multivariate Statistics.** (3) Multivariate and generalized linear methods for classification, modeling, discrimination, and analysis. P—Mathematics 602 and 656; or POI. *Berenhaut, Norris*

661. **Selected Topics.** (1, 1.5, 2, or 3) Topics in mathematics that are not considered in regular courses. Content varies.

681. **Individual Study.** (1 or 2) A course of independent study directed by a faculty adviser. By prearrangement.

682. **Reading in Mathematics.** (1, 2, or 3) Reading in mathematical topics to provide a foundational basis for more advanced study in a particular mathematical area. Topics vary and may include material from algebra, analysis, combinatorics, computational or applied mathematics,
number theory, topology, or statistics. May not be used to satisfy any requirement in the mathematics MA degree with thesis. No more than three hours may be applied to the requirements for the mathematics MA degree without thesis. **Staff**

For Graduate Students

711, 712. Real Analysis. (3, 3) Measure and integration theory, elementary functional analysis, selected advanced topics in analysis. *Carmichael, Hayashi, Robinson*

715, 716. Seminar in Analysis. (1, 1) **Baxley**

717. Optimization in Banach Spaces. (3) Banach and Hilbert spaces, best approximations, linear operators and adjoints, Frechet derivatives and nonlinear optimization, fixed points and iterative methods. Applications to control theory, mathematical programming, and numerical analysis. **Baxley**

718. Topics in Analysis. (3) Selected topics from functional analysis or analytic function theory. **Baxley, Robinson**

721, 722. Abstract Algebra. (3, 3) Groups, rings, fields, extensions, Euclidean domains, polynomials, vector spaces, Galois theory. *Kirkman, Kuzmanovich*

723, 724. Seminar on Theory of Matrices. (1, 1) **Plemmons**

725, 726. Seminar in Algebra. (1, 1) **John, Kirkman**

728. Topics in Algebra. (3) Topics vary and may include algebraic coding theory, algebraic number theory, matrix theory, representation theory, non-commutative ring theory. *Kirkman, Kuzmanovich*

731, 732. General Topology. (3, 3) An axiomatic development of topological spaces. Includes continuity, connectedness, compactness, separation axioms, metric spaces, convergence, embedding and metrization, function and quotient spaces, and complete metric spaces. **Staff**

733. Topics in Topology and Geometry. (3) Topics vary and may include knot theory, non-Euclidean geometry, combinatorial topology, differential topology, minimal surfaces and algebraic topology. **Howards**

735, 736. Seminar on Topology. (1, 1) **May**

737, 738. Seminar on Geometry. (1, 1) **Staff**

744. Topics in Number Theory. (3) Topics vary and are chosen from the areas of analytic, algebraic, and elementary number theory. Topics may include Farey fractions, the theory of partitions, Waring’s problem, prime number theorem, and Dirichlet’s problem. *Hayashi, Howard*

745, 746. Seminar on Number Theory. (1, 1) **Hayashi, Howard**

747. Topics in Discrete Mathematics. (3) Topics vary and may include enumerative combinatorics, graph theory, algebraic combinatorics, combinatorial optimization, coding theory, experimental designs, Ramsey theory, Polya theory, representation theory, set theory and mathematical logic. *Allen, Howard, John*

748, 749. Seminar on Combinatorial Analysis. (1, 1) **Allen, Howard**

750. Dynamical Systems. (3) Introduction to modern theory of dynamical systems. Linear and nonlinear autonomous differential equations, invariant sets, closed orbits, Poincare maps, structural stability, center manifolds, normal forms, local bifurcations of equilibria, linear
and non-linear maps, hyperbolic sets, attractors, symbolic representation, fractal dimensions. P—Mathematics 611. Baxley, Jiang

752. Topics in Applied Mathematics. (3) Topics vary and may include computational methods in differential equations, optimization methods, approximation techniques, eigenvalue problems. Baxley, Plemmons, Robinson

753. Nonlinear Optimization. (3) The problem of finding global minimums of functions is addressed in the context of problems in which many local minima exist. Numerical techniques are emphasized, including gradient descent and quasi-Newton methods. Current literature is examined and a comparison made of various techniques for both unconstrained and constrained optimization problems. Credit not allowed for both Mathematics 753 and Computer Science 753. P—Mathematics (or Computer Science) 655. Plemmons

754. Numerical Methods for Partial Differential Equations. (3) Numerical techniques for solving partial differential equations (including elliptic, parabolic and hyperbolic) are studied along with applications to science and engineering. Theoretical foundations are described and emphasis is placed on algorithm design and implementation using either C, FORTRAN or MATLAB. Credit not allowed for both Mathematics 754 and Computer Science 754. P—Computer Science 655 or Mathematics 655. Baxley, Jiang, Plemmons, Robinson

758. Topics in Statistics. (3) Topics vary and may include linear models, nonparametric statistics, stochastic processes. Kirkman, Norris

761. Stochastic Processes. (3) Discrete time and continuous time Markov chains, Poisson processes, general birth and death processes, renewal theory. Applications, including general queuing models. Norris

791, 792. Thesis Research. (1-9) Staff

Microbiology and Immunology

Bowman Gray Campus

Chair Steven B. Mizel
Professors David A. Bass, Charles E. McCall, Steven B. Mizel
Associate Professors Martha Alexander-Miller, David Ornelles, Griffith Parks, Daniel J. Wozniak
Assistant Professors Rajendar Deora, Jason Grayson, Elizabeth M. Hiltbold, Sean D. Reid, W. Edward Swords

The Department of Microbiology and Immunology offers a graduate program leading to the PhD degree. The program prepares students for careers in research and teaching in the fields of bacteriology, immunology, molecular biology, and virology.

Students complete their formal course work in the first year with a core curriculum consisting of bacteriology, bacterial genetics, immunology, virology, biochemistry, and molecular biology. Also during the first year, students participate in research through three rotations in laboratories studying bacterial and viral pathogenesis, cellular and molecular immunology, and the cell and molecular biology of the microbe-host interaction. At the end of the first year, students select their research area and dissertation adviser. In the second and third years, all students participate in the interdisciplinary, literature-based course 749, 750.
See the Department of Microbiology and Immunology homepage (http://wfubmc.edu/microbio) for further information on the department and detailed descriptions of faculty research interests.

701. Microbiology of Infectious Diseases. (3) An in-depth study of the role of microbial agents in host-parasite interactions. The course includes a survey of the basic properties of bacteria, viruses, fungi, and parasites. The pathways leading from exposure to successful infection to disease are examined. Specific examples of major pathogens and the diseases they cause are discussed in detail in the context of clinical situations employing the problem-based learning format.

702. Fundamentals of Virology. (4) A lecture course that deals with basic aspects of structure, replication, and pathogenesis of animal viruses. Intended for all graduate students in microbiology and immunology to provide in-depth coverage of these areas. P—Biochemistry. Parks, Staff

703. Fundamentals of Bacteriology. (4) A lecture course that deals with basic aspects of bacterial structure, physiology, genetics, and pathogenesis. Intended for all graduate students in microbiology and immunology to provide in-depth coverage of these areas. P—Biochemistry. Wozniak, Staff

705. Fundamentals of Immunology. (4) The course deals with the cellular, biochemical, and molecular aspects of innate, cellular and humoral immunity. It is intended for all graduate students in microbiology and immunology, and provides in-depth coverage of these areas. P or C—Microbiology and Immunology 731. Hiltbold, Staff

707. Scientific Methodology. (1) Instruction in the scientific method as applied to basic research in bacteriology, virology, and immunology and microbial pathogenesis. Examples from the scientific literature are used to provide practical training in effective oral communication and expository scientific writing. P—POI. Ornelles, Staff

711. Tutorial in Medical Microbiology. (1-3) Guided reading and discussion of the pathogenesis of infectious diseases. Staff

712, 713. Tutorial in Biochemistry. (2, 2) This course is comprised of lectures, guided reading, and discussion of biochemical pathways related to immunology and pathogenesis. Alexander-Miller, Staff

719, 720. Research in Microbiology. (Credit to be arranged.)

721, 722. Teacher Training. (0) Advanced graduate students give a lecture in their areas of specialization in one of the graduate courses offered by the department. P—Advanced standing.

731. Molecular Biology. (3) A survey of the fundamentals of molecular biology. Included are fundamentals of microbial genetics and discussions of nucleic acid structure and mutagenesis, DNA replication and recombination, transcription and control of gene expression and protein translation. The introduction is followed by an advanced treatment of these topics and discussions of mammalian genetics and immunogenetics with emphasis on current trends in research. P or C—Biochemistry 705. Staff

732. Molecular Biology. (3) Detailed lectures and discussion surveying the analysis of cellular processes, oncology, atherosclerosis and development by the experimental approaches of molecular biology. Emphasis is on eukaryotic systems and review of pertinent research literature. P—Microbiology and Immunology 731. Staff
Advanced Topics in Microbiology and Immunology. (2) A seminar course dedicated to the analysis of current research literature on the fundamental biochemical and molecular processes involved in the growth, differentiation, and functions of bacteria, viruses, and eukaryotic cells. The course not only provides the student with experience in literature analysis, but also offers a broad exposure to timely and important themes and principles that link the disciplines of microbiology, virology, and immunology. P—Biochemistry, microbiology, immunology, and virology. Grayson, Staff

Molecular and Cellular Pathobiology
Bowman Gray Campus, Friedberg Campus

Pathology

Director John S. Parks

Associate Professors J. Mark Cline, Paul A. Dawson, Iris J. Edwards, John W. Hartz, Nancy L. Jones, Nancy Kock, Timothy Kute, Thomas C. Register, Gregory S. Shelness, Jeanne M. Wallace

Assistant Professors Isabelle M. Berquin, Purnima Dubey, Liqing Yu

This is an interdisciplinary program offered by the Department of Pathology leading to the PhD degree. The course of study and research is designed for students who wish to prepare for a career of research or research and teaching in pathobiology, the study of the fundamental mechanisms of disease processes. By means of coursework and seminars, the student is given a firm background in the basic medical sciences, including pathology, cell biology, molecular biology, biochemistry, physiology, and statistics. Advanced coursework is designed to fit the interests of the individual student, and disciplinary strength may be developed in molecular, cellular, biochemical, metabolic, comparative, or morphologic aspects of disease processes. Experimental design, the use of modern techniques and procedures, and interpretation of experimental results are stressed. The student is required to fulfill a special skills requirement, such as statistics, microscopy, computational analysis in molecular biology, or a foreign language.

Research opportunities are available in the areas of cell and molecular biology, including gene discovery and translational genetics; macrophage and smooth-muscle cell biology; cancer biology; lipid and lipoprotein metabolism; arteriosclerosis; diabetes; hypertension; osteoporosis; nutrition; reproductive biology; nonhuman primate behavior; comparative genetics; and diseases of laboratory animals. Research is particularly strong in the area of cardiovascular disease, chiefly arteriosclerosis, with emphasis on the use of transgenic animals, pigeons, and nonhuman primates as animal models for this disease.

The program is open to qualified applicants with the BS or BA degree and a strong background in the physical and biological sciences. In addition, the program is open to applicants holding the MD or DVM degree who desire an advanced degree to prepare them for careers in research. The PhD program began in 1969.
702. Fundamentals of Pathology. (3) An introduction to the principles of disease with special emphasis on mechanisms of cellular and tissue responses. The first portion of the course deals with methods of study; cellular pathobiology and mechanisms of inflammatory response; and genetic, immune and infectious disorders. The second portion is concerned with disorders of cellular differentiation and growth, disorders of circulation, metabolic disorders and aging. Exposure to human gross pathology is provided during the course. P—Histology or POI. Feldman, Staff

705. Biochemistry I. See Biochemistry and Molecular Biology.

709, 710. Advanced Topics in Comparative Medicine. See Comparative Medicine.

710. Pathologic Biochemistry. (2) A lecture and student participation course designed to present concepts of biochemical changes associated with disease processes. It is meant to provide the student with examples of various ways in which biochemical changes can cause disease or result from disease. The course is not designed as a survey of all the biochemical disorders that have been described; emphasis is on the intensive discussion of examples of different mechanisms of biochemical alterations associated with disease. Examples of biochemical disorders affecting the following systems are considered: disorders of protein, amino acid, and carbohydrate metabolism; endocrine disorders; lipid storage diseases; disorders of metal, prophyrin, heme metabolism, receptors and hemostasis; diseases of muscle and connective tissue. P—General biochemistry or equivalent. St. Clair, Staff

715, 716. Advanced Topics in Pathology. (1-5) An advanced lecture and student participation course dealing with areas of new knowledge in pathobiology. Course content may change with recent advances in knowledge. Four semesters may be taken for credit. P—Molecular and Cellular Pathobiology 702, Comparative Medicine 703, or POI. Staff

717. Pathobiology of Atherosclerosis. (4) A lecture course exploring intensively the pathogenetic mechanisms that underlie this most prevalent human disease. Broad areas studied include human atherosclerosis as a disease process (natural history and factors affecting extent and severity), approaches to the study of pathogenesis of atherosclerosis in man (animal models, homeostasis of serum lipids, lipoproteins, diet, behavioral factors, arterial wall metabolism, cellular and molecular biological aspects of atherosclerosis, clotting mechanisms and thrombosis, genetic factors, experimental myocardial infarction), and the scientific basis for therapy in atherosclerosis (surgery, sterol synthesis inhibitors, etc.). P—General biochemistry, general pathology, or equivalent. St. Clair, Staff

718. Diagnostic Clinical Microbiology. (2) A didactic course designed to provide the student with an understanding of basic concepts of infectious disease and how they relate to clinical microbiology. Emphasis is on the role of the clinical microbiologist in the proper collection of specimens, interpretation of laboratory results, and selection of appropriate antimicrobial agents. Wasilaukas

719. Microscopy Research Techniques. (3) An introductory course designed to develop skill in the use of microscopy in biomedical research. The basic laboratory-oriented, hands-on program provides the opportunity to develop proficiency in operation of light, video, confocal, and electron microscopes. Laboratory experience is supplemented with a lecture series introducing major research applications such as histo- and cytochemistry, digital image processing and analysis, quantitative microscopy, and 3-D microscopy. The final project requires students to apply microscopy techniques to their research interests. Class is limited to eight students with a preference for students after their first year of graduate school. Jones, Staff
Select Topics in Microscopy. (1-3) Laboratory-based independent study course to develop specialized practical knowledge in the use of a select research technique such as autoradiography, histo- or cytochemistry, whole-mount (3-D) microscopy, replica techniques, or morphometry. This student-initiated, individualized study is designed to meet specific research and educational needs. P—Molecular and Cellular Pathobiology 719 or POI. Jones, Staff

Specialized Training in Electron Microscopy. (5, 5) An intensive laboratory skills course designed to provide comprehensive technical training in all phases of electron microscopy. Intended for students wishing to develop full competency in the use of electron microscopy as a major research tool. Encompassed is training in sample processing for both transmission and scanning electron microscopy, routine microscope service, and darkroom skills. Limited enrollment. P—POI. Jones, Staff

Molecular and Cellular Pathobiology Seminar. (1,1) Seminars on topics of current interest are offered weekly by graduate students, staff, and visiting lecturers. Sorci-Thomas, Staff

Research. Research opportunities are available in molecular and cellular pathobiology projects conducted in the Department of Pathology.

Molecular Biology. See Biochemistry and Molecular Biology.

Molecular Genetics

Bowman Gray Campus

Director Mark O. Lively

Professors Steven A. Akman, Donald W. Bowden, H. Alexander Claiborne, Ross P. Holmes, Susan M. Hutson, Mark O. Lively, Douglas S. Lyles, Charles E. McCall, Mark S. Miller, Steven B. Mizel, Ronald W. Oppenheim, John S. Parks, Peter B. Smith, William E. Sonntag, Mary G. Sorci-Thomas, Alan J. Townsend, Richard B. Weinberg

Assistant Professors Bernard Brown, II, Bao-Li Chang, Rajendar Deora, Karin Drotschmann, Gregory Hawkins, Ashok N. Hegde, Elizabeth M. Hiltbold, Thomas Hollis, David Horita, Timothy Howard, Constantinos Koumenis, Liwu Li, W. Todd Lowther, Nilamadhab Mishra, Derek Parsonage, Michele Sale, Fernando Segade, W. Edward Swords, Liqing Yu

Research Assistant Professors Islam Khan, Barb K. Yoza

Instructor Yolanda Sanchez

Faculty representing eight basic science and clinical departments are brought together to form an interdisciplinary curriculum that emphasizes detailed analyses of the molecular and biological mechanisms of a wide variety of biomedical problems. The major goal of the program is to train students for independent research and teaching in the fields of molecular and cellular biology and genetics. The curriculum provides a broad treatment of the fundamental techniques of molecular biology as well as specialization which is developed through the application of the
approaches of molecular biology to the research areas investigated by Molecular Genetics faculty members. These areas include: control of gene expression; molecular pathogenesis; protein biosynthesis and compartmentalization; cell development and differentiation; carcinogenesis; development of cellular resistance to cancer; genetic linkage analysis and gene identification; major histocompatibility genes; clinical cytogenetics; molecular mechanisms of mutagenesis; lymphokine function; and others. Individualized programs of study leading to the PhD degree in molecular genetics are offered.

During the first year, students participate in courses that build a strong foundation upon which to add the specialization developed later in laboratory research. The first-year courses include 701, 702, 705, 721 and 731. Additionally, first-year students participate in laboratory rotations designed to help them choose a thesis adviser. During the second year, students begin research in their thesis laboratory and take specialty courses relevant to the research. Second-year courses include 741, 742, advanced seminar-style courses. Thesis research is performed under the supervision of a program faculty member and is tailored to meet the interests of the individual student.

For Graduate Students

701, 702. Research in Molecular Genetics. (1-9) Research investigations in molecular genetics are conducted in the laboratories of program members studying a wide range of disciplines.

Staff

702. Fundamentals of Virology. (4) See Microbiology and Immunology.

710. Scientific Writing. (1) A course designed to provide training in the preparation of scientific papers for publication, preparation of research proposals, and discussions of ethical conduct of scientific research. P—POI.

Staff

721. Computational Analysis in Molecular Biology. (2) Lecture and laboratory. An introduction to the use of computers in analysis of gene sequences and molecular modeling. Students learn to use a variety of computer software important to research in molecular biology, with emphasis on use of the Wisconsin Sequence Analysis Package.

Lively

731. Molecular Biology. (3) A lecture course that surveys the fundamentals of molecular biology. Topics include nucleic acid structure, DNA replication and repair, transcription and translational control, microbial and human genetics. These topics are discussed with emphasis on the use of molecular approaches to research in these areas.

Perrino

732. Molecular Biology. (3) Detailed lectures and discussion surveying the analysis of cellular processes, oncology, artherosclerosis and development by the experimental approaches of molecular biology. Emphasis is on eukaryotic systems and review of pertinent research literature.

Staff

734. Human Molecular Genetics. (2) A combined lecture/seminar course providing an overview of current theoretical and technical approaches for locating, identifying, and cloning human genes using molecular genetic methods. Emphasis is placed on the search for genes that contribute to simple single-gene disorders and common complex diseases. Topics include genetic mapping in humans, construction of physical maps of chromosomes, identification of coding sequences and disease susceptibility genes, and functional analysis of gene products. P—Molecular Genetics, Biochemistry, Microbiology and Immunology 731 or POI.

Bowden
741, 742. *Tutorials in Molecular Biology.* (2, 2) A seminar course that focuses on new and important aspects of research in molecular and cellular biology with an emphasis on the current literature. Each semester the course explores specific themes chosen by a committee of faculty and students. Students select topics for presentation and lead discussions with faculty and graduate students. *Staff*

751. Medical Genetics. (3) An introduction to the principles and clinical evaluation of human genetic diseases. The course covers modes of inheritance, etiology, characteristics, epidemiology, pathogenesis and clinical features of a wide variety of medical genetic disorders. Procedures for diagnostic confirmation (cytogenetic, molecular, biochemical), considerations in management and aspects of genetic counseling is presented. *Pettenati, Staff*

Molecular Medicine

Bowman Gray Campus

Co-directors Kevin P. High, Linda McPhail
Recruiter Bridget K. Brosnihan

The last decade has brought about fundamental and radical advances in a number of disciplines including biochemistry, cellular and molecular biology, and immunology. These changes have led to an unparalleled time of opportunity and excitement for basic and clinical scientists. Both basic and clinical scientists can now test novel and provocative hypotheses using tools such as recombinant DNA, nuclear magnetic resonance, mass spectrometry, and monoclonal antibodies and quickly acquire results that would have seemed only fanciful science fiction a few years ago. These new approaches have not only made it possible to understand cellular and molecular mechanisms of human disease, but they also offer the promise of new and revolutionary therapeutic options for clinicians.

In many major academic medical centers in this country, new advances have largely erased many of the historical divisions between basic and clinical scientists. For modern-day clinicians to understand and to take advantage of new developments, they often must spend a great deal of time at both the bedside and the bench. However, the potential to understand mechanisms of and have an impact on the treatment of human diseases has lured some basic scientists to move closer to their clinical counterparts. This movement into the clinical arena facilitates the challenge of viewing a complex clinical disorder through the eyes of the basic scientist. Moreover, ideas generated in a clinical setting by the basic scientist can often quickly transcend into an understanding of the role of a particular biological process in a human disease and ultimately the development of a treatment for that disease. For these reasons, there has been a major emphasis by national, private, and industrial granting organizations to fund basic research that has the potential to immediately impact human disease. These developments have created a unique niche for basic (PhD) scientists who are trained on the cutting edge of molecular advances to perform “translational” research in human biology.

To meet the challenge of training basic scientists who function successfully in clinical environments, the program in molecular medicine provides training in the use of cellular, molecular, and integrative approaches to investigate mammalian biology with an emphasis on human disease. This is a multidisciplinary program with a faculty consisting of scientists who have major ongoing human research programs. This program offers PhD students a comprehensive
knowledge of human biology and disease that will allow them to develop basic research pro-
grams with fundamental clinical implications. It is also designed to train biomedical researchers
who fill an important niche in both academia and industry.

A master’s degree in molecular medicine is also available for qualified MD candidates. The
overall objective of this program is to train individuals who already hold an MD degree at the
 cellular and molecular level and to integrate this basic training with clinical applications involv-
ing human disease. The program provides physicians with the skills to develop and apply
 sophisticated biochemical and molecular approaches useful in the understanding, diagnosis,
and treatment of human disease. It is hoped that this program will enhance interaction between
PhDs and MDs in clinical departments who are engaged in fundamental bench research that is
focused on human disease.

More information regarding both the PhD and the master’s in molecular medicine are
available on our homepage, www.wfubmc.edu/pcr/study_phdmm.html, and prospective
students are encouraged to contact individual faculty members.

Required Courses

705. Fundamentals of Immunology. (4) See Microbiology and Immunology.

707. Biochemical Techniques. (2) See Biochemistry and Molecular Biology.

711, 712. Contemporary Issues in Molecular Medicine. (1,1) A course designed to describe a
human disease, first in clinical terms and then to follow the development of the understanding
of that disease to the molecular level. This course introduces students to potential preceptors
and allows students to see experimental strategies used by faculty in the program to study
human disease. Hantgan

715. Clinical Experience. (3) This course serves as an introduction to clinical medicine for the
PhD student. Students are required to round with medicine and pediatric teams in the intensive
care units and to observe pediatric and internal medicine outpatient clinics. Students observe
in several clinical laboratory settings. Students observe and interact with members of the health
care team in medical decision-making and serve as a source of basic science information to the
medical team. P—POI. High, McPhail, Staff

721. Molecular Basis of Human Disease. (3) This course is designed to provide graduate
students with a command of the basic principles and language underlying the scientific basis
of medicine. The course differs substantially from the medical school curriculum in that it
emphasizes the cellular and molecular mechanisms of health and disease, and points out
the important issues and research questions in each field. It differs from a standard graduate
program in that it integrates medicine into a basic science foundation to teach the student how
to understand and address basic questions in human disease. At the end of this course, the stu-
dent should have a working knowledge of the basis of common human diseases and treatment
and be able to confidently navigate through the evolution of a disease and its medical literature.
High, McPhail

722. Molecular Basis of Human Disease II. (3) Spring semester. Continuation of 721. See
Molecular Basis of Human Disease I for course description. High, McPhail
724. **Scientific Development and the Business of Science.** (3) Reviews techniques for effective communication of scientific proposals and presentations, both oral and written. For oral presentations, emphasis is on content organization and connecting with the audience. Assignments include the presentation and critical discussion of papers by the students. For written presentations, the emphasis is on grant proposal development, as well as familiarization with the peer-review process. The course consists of lectures on all aspects of grant development (including budgets and protocols and compliance regulations for human and animal research), and student preparation of a grant proposal. An oral exercise includes the discussion of an NIH RO1 proposal in a mock study section format. P—POI. *Sanchez*

731. **Molecular Biology.** (3) See Biochemistry and Molecular Biology.

732. **Molecular Biology.** (3) See Biochemistry and Molecular Biology.

734. **Human Molecular Genetics.** (2) See Molecular Genetics.

781, 782. **Advanced Topics in Integrated Physiology and Pharmacology.** (6) See Physiology and Pharmacology.

791, 792. **Research.** (1-9) This course involves closely supervised research in various topics in molecular medicine, with a special emphasis on models of human disease, including research in preparation for the doctoral dissertation. *Staff*

Neurobiology and Anatomy

Bowman Gray Campus

Chair Barry E. Stein
Professors Walter J. Bo, Judy K. Brunso-Bechtold, Craig K. Henkel, Ronald W. Oppenheim, Barry E. Stein, Michael Tytell
Associate Professors Dwayne W. Godwin, James E. Johnson, John G. McHaffie, Carolanne E. Milligan, David R. Riddle, Mark T. Wallace
Assistant Professors Robert C. Coghill, Christos Constantinidis, James A. Hammarback, Ashok Hegde, Emilio Salinas, Terrence R. Stanford, Christopher P. Turner
Research Assistant Professor John A. Anstrom

The Department of Neurobiology and Anatomy offers a graduate program leading to the PhD degree for students interested in research and teaching in areas of contemporary neuroscience and anatomy. The department offers a flexible and highly individualized curriculum designed to fit the needs and interest of the student. The first year core has been developed to provide the student with a solid foundation in the areas of neuroscience, and cell and structural biology. In addition, during this time, students gain practical laboratory experience by participating in a series of research rotations. In their second year, many students opt to specialize in one of the two core academic and research areas within the department—systems neurobiology or cell and molecular developmental neurobiology. During the second year, students typically choose a research area and begin thesis work. Throughout the course of training in the department, an emphasis is placed on the development of such important skills as mentoring, networking, career options, presentation skills and grant writing. The department is home to a federally sponsored training program in sensory systems that funds both pre- and postdoctoral fellowships.
There is a wide diversity of research interests within the department. These include such topics as sensory, multisensory and sensorimotor integration, neural plasticity and learning, computational models, naturally occurring cell death and the role of neurotrophins, regeneration and repair of nervous system damage, development and aging in the nervous system, cellular differentiation and migration, heat shock and cytoskeletal proteins, and the pathogenesis of atherosclerosis.

The department is home to a number of state-of-the-art research facilities, including core laboratories for molecular biology, microscopy, imaging, electrophysiology and behavior/psychophysics. In addition, numerous institutional cores and laboratories are readily accessible to students in the department program.

Applicants applying for the graduate program should have demonstrated undergraduate proficiency in biology, chemistry, physics and mathematics, and should also have satisfactory scores on the Graduate Record Examination. The PhD was first offered in 1961.

701. Gross Anatomy. (10) This course is designed for graduate students. It consists of in-depth dissection of the human body and cross-sectional anatomy. Students are given special reading assignments that are designed to bring together fundamental concepts of gross anatomy and microscopic anatomy. In addition, students are required to read additional articles concerned with some of the major concepts of gross anatomy. Evaluation will be based on performance in the laboratory, conferences, and oral and written examinations. P—Chordate Anatomy. Bo, Staff

704. Molecular Neuroscience. (3) This course introduces graduate and advanced undergraduate students to the basic principles of neurobiology as studied by cell and molecular biologists. Lectures introduce invertebrate and vertebrate model neuronal systems and the cellular and molecular methods to study them. Also listed as Neuroscience 704. P—POI. Walker, Staff

710. Cell Biology. (3) An interdisciplinary course utilizing faculty from several departments. Historical and current concepts relating to cell theory, experimental approaches to the study of cells, and knowledge of cellular components are discussed in detail. The cell surface, nucleus, and cellular organelles are presented in relation to membrane turnover, cell division, cellular growth, and energetics, as well as cell motility and regulation. Several features of cellular metabolism also are covered. P— POI. Tytell, Staff

712. Introduction to Neuroscience I. See Neuroscience.

713. Introduction to Neuroscience II. See Neuroscience.

717, 718. Special Topics in Gross Anatomy. (1-2) Special dissection of selected areas of the body, as well as discussions and reading assignments in those areas. P—Neurobiology and Anatomy 701.

719, 720. Special Topics in Microanatomy. (1-2) Special preparations and discussions, seminars, and reading assignments in selected areas of histology. P—POI.

721, 722. Special Topics in Developmental Biology. (1-2) This course deals with selected current topics in the field of developmental biology. The course includes seminars, discussions, and reading assignments in the areas of interest. P—POI.

735. The Development and Anatomy of Sensory Systems. (3) This course is designed as an introduction to the structure and ontogeny of the sensory pathways. The aim of the course is to provide a foundation for the subsequent advanced course work in sensory systems, which
provides one of the most fertile experimental areas in developmental biology. Topics include: basic genetic control of developmental processes; embryonic development of the sensory nervous system; development and organization of subcortical sensory pathways; development of sensory cortices; role of the environment in neural development; and the genetics of neuronal ontogeny. Riddle

741. Sensory Neuroscience I: Audition and Vision. (6) This course is designed to introduce students to auditory and visual sensory neurobiology from the cellular to systems level. The first segment of this course emphasizes the auditory system and includes the following topics: signal transduction and sensory coding in the cochlea; the perception of pitch, derivation of position through interaural phase differences; auditory processing in the ascending pathways and cortical processing of sound; electroreception in fish as a specialization of the auditory pathway; prey localization by barn owls and echolocation in bats. Coverage of the visual system includes: signal transduction, sensory coding and pattern perception in the retina; receptive field analysis at the retina, lateral geniculate nucleus, superior colliculus and cortex; Fourier theorem applied to sensory systems; multiple visual areas of cortex; higher order processing in parietal cortex and inferotemporal cortex; color and motion. Separate laboratory exercises present techniques used in the study of these systems. Hegde

742. Sensory Neuroscience II: Somatosensation, Taste and Olfaction. (6) This course emphasizes the somatosensory system as well as the chemical senses of taste and olfaction. The following topics are covered: peripheral sensory receptors in the skin and joints, and signal transduction; texture encoding and receptive field structure of somatosensory neurons; perception of pain and phantom limb phenomena; localization of somatosensory stimuli on the body surface; somatosensory processing in the ventrobasal thalamic complex and primary somatosensory cortex; encoding of taste; hypotheses of taste perception; higher level olfactory processing. Separate laboratory exercises present techniques used in the study of these systems. McHaffie

743. Sensory Neuroscience III: Higher Order Interactions and Integration. (3) This course is designed to integrate the information presented in I and II into a unified view of sensory systems. Comparison and contrasts are made between sensory systems at key points along the ascending pathways including the cellular basis of response properties as well as neurochemical transmission and interactions with voltage-dependent membrane conductances. Higher order phenomena, including attention, sensory neglect, and the merging and interaction of the senses in the cerebrum and midbrain are emphasized, as well as neuropathologies associated with deficits in one or more sensory systems. In addition, this course includes a detailed consideration of clinical neuroscience and neuropathology. Separate laboratory exercises present techniques used in the study of these systems. Stanford

745. Special Topics: Thalamus. (1-2) The thalamus is often considered a simple gateway to the cerebral cortex, but it has a variety of complex functions—such as interactions with other thalamic nuclei and the cerebral cortex—that affect our perceptions and actions. This course considers the thalamus from a multidisciplinary perspective, with directed readings on the detailed neuroanatomy, neurophysiology and neuropharmacology of the thalamus designed to portray a unified view of its many functions in health and disease. P—POI. Godwin

747, 748. Directed Journal Club in Sensory Neuroscience. (2) This course correlates with topics in journal club readings, the formal lecture courses in Sensory Neuroscience I-III. In this course, students are required to read and critique papers chosen to complement the classroom lectures. Both seminal papers and current research are reviewed. The directed nature of the readings enhances the student’s appreciation and understanding of the formal lectures. Students lead
the presentation of the journal articles, thus providing opportunities for teaching in the area of sensory systems. *Hedge/McHaffie*

749. **Multisensory Journal Club.** (1) This course is designed around the historical and contemporary research literature in an area of burgeoning scientific interest—multisensory and cross-modal processes. Students are assigned readings, and are expected to present and participate in the discussion of the assigned literature. The goals of the course are to familiarize students with this fascinating field of research, and to develop presentation and critical reading skills. *Wallace*

751. **Developmental Neurobiology I: Molecular Control of Neural Lineages and Differentiation.** (6) This course is designed as an introduction to principles of early neural development. Topics include both the genetic and epigenetic control of early developmental events including the determination of neuronal and glial cell lineages, expression of homeotic genes and neural pattern formation, inductive signal events required for neuronal differentiation and migration in both the central and peripheral nervous system and the role of the extracellular environment in axonal growth. Students examine both historical and current models of molecular mechanisms regulating neural development through prescribed readings, tutorials and interactive discussion sessions. A weekly hands-on tutorial introduces students to a variety of cellular and molecular methods including mRNA analysis (mRNA purification, electrophoresis and Northern blot analysis, Rnase protection assays, RT-PCR analysis, cryostat sectioning, in situ hybridization) and protein analysis (protein polyacrylamide gel electrophoresis—PAGE, Western blot analysis, Immunoassays and Immunocytochemistry). *Johnson*

752. **Developmental Neurobiology II: Progressive and Regressive Events in Neural Development.** (6) This course emphasizes regressive and progressive events required for the maturation of neural systems. Topics include molecular mechanisms of regulating both normal and pathological cell death in neurons and glia, including extracellular signals, receptors and intracellular pathways promoting or preventing cell death. Also included in the course are topics concerning the development, specificity and pruning of synaptic connections in neural networks. The role of cell adhesion and extracellular matrix in the formation of neural networks is included. Students examine both historical and current molecular models of cell death, neurotrophism, neurotrophic factors and their receptors. A weekly hands-on tutorial introduces students to a variety of cellular and molecular methods including in vitro methods of analysis (explant and dissociated neuronal cell culture assays for studies of cell death and axonal growth) and in vitro methods (quantitative analysis of cell death including fluorescent, histological and TUNNEL labeling of cell death, methods of axonal and dendritic labeling and EM ultrastructural analysis of synaptic changes). *Oppenheim*

753. **Developmental Neurobiology III: Neural Plasticity and Regeneration.** (4) This course focuses on the capacity of neural networks to be modified by experience or to be reconstructed after injury. The course examines molecular mechanisms proposed for activity-dependent competition in the initial construction of the nervous system, the plasticity of connections in models of activity mediated sprouting, mechanisms proposed for neural plasticity in learning and memory and a comparison of events required for neuronal repair and regeneration in the PNS and CNS. Current attempts to utilize neural transplantation to enhance the recovery of function in models of neurological diseases and trauma are also reviewed. Students examine both historical and current models of neural plasticity and regeneration through prescribed readings, tutorials and interactive discussion sessions. *Riddle*

757, 758. **Directed Journal Club in Developmental and Molecular Neurobiology.** (2) This course correlates with topics in journal club readings, the formal lecture courses in Cellular, Molecular, and Developmental Neurobiology I-III. In this course, students are required to read
and critique papers chosen to complement the classroom lectures. Both seminal papers and current research are reviewed. The directed nature of the readings enhances the student’s appreciation and understanding of the formal lectures. Students will lead the presentation of the journal articles, thus providing opportunities for teaching in these areas. Milligan

760. Manuscript Preparation. (2) Sessions are held throughout the semester to discuss and critique the details of how the nature of a journal determines the look and feel of the published article. Classic journal styles are compared and contrasted with more contemporary styles or address a specific audience. Written summaries from students are critiqued with feedback on where or how to improve style, content, and presentation. In addition, students are given the opportunity to develop skills that address presentation of simple figures with appropriately constructed figure legends. A final submission of a template manuscript is required. The submission simulates a typical interaction with a PI to develop a finished manuscript and includes the process of online manuscript submission. It is preferred that this course be taken the first year of graduate study. Turner

761, 762. Research Design in Neurobiology. (2-3) This course sequence emphasizes training in the essential elements of biomedical research design. The class sequence begins in the summer prior to other course work, in a two-hour course emphasizing the articulation, definition and prioritization of neurobiological research problems as well as formulation of strategies to address these problems. Statistical design focused on special requirements of sensory neurobiological inquiry is covered. In the following semesters, the concepts introduced in the first course are applied to student preparation (under the guidance of faculty mentors) of grant proposals styled after National Research Service Awards, that may be submitted to the appropriate agencies at the end of this course. The culmination of this series of courses will be a NIH-styled Study Section wherein students take part in the critique and evaluation of research proposals. Staff

771, 772. Career Development in Neurobiology. (1) This course is structured to address practical issues related to establishing and maintaining a career in neurobiology. Students are trained in the necessary skills to create employment opportunities, either in a traditional tenure-track academic environment, or in the rapidly growing areas of biotechnology in industry and government. As part of this course, students are exposed to neurobiology-oriented biotechnology research in the local area of the Research Triangle Park. Other major topics covered in this course include: managing and supervising a research laboratory, preparation for job interviews, biomedical ethics, and animal welfare issues. Staff

790. Marine Models in Cell Biological Research. (6) An eight-week course with an emphasis on independent research that is taught during the summer at the Marine Biological Laboratory in Woods Hole, MA. Students attend lectures and seminars in areas of cell and developmental biology and neurobiology. Each student is guided in a research project selected from the area of expertise of participating faculty. Research projects are designed to take advantage of the special facilities of the Marine Biological Laboratory, such as confocal microscopy and intracellular Ca++ imaging, and the availability of a wide variety of marine organisms. Students write their results in the standard format used for scientific journal publication and have the option of presenting their work orally at the annual MBL scientific meetings. This course is a companion to the undergraduate biology course (395S). P—POI. Tytell, Browne

791, 792. Research. (1-9) Closely supervised research in various topics in biological structure, developmental and cell biology, and neuroscience, including research in preparation for the doctoral dissertation. Staff
The program is composed of over 63 research faculty and 33 clinical faculty representing fourteen basic science and clinical departments. The program offers a PhD degree in neuroscience to students interested in a research and teaching career in all areas of neurobiology. All students are required to take a core curriculum composed of courses 701, 703, 704, 707, 712, and 713. Students also are required to take course work in statistics and experimental design. During the first year of graduate study, students obtain hands-on research experience by participating in laboratory rotations. Additional graduate course work is tailored to meet the individual needs of each student. A major goal of the program is the development of neuroscientists with a broad background in cellular, molecular and systems neuroscience with specialized skills in a specific sub-area of neurobiology.

Areas of faculty research expertise include: developmental neurobiology; neurobiology of aging; neurobiology of drug abuse; neural basis of memory; learning and plasticity; nerve growth and regeneration; visual sciences; sensory neurobiology; neuropsychology; epilepsy; cellular and molecular neurobiology; repair of the injured nervous system; and neurodegenerative diseases.

As a major center of neuroscience research, the University has modern research facilities that cover all areas of contemporary neurobiological investigation, from gene cloning, genomics, and molecular genetics to electrophysiology, cell biology, and behavioral analysis. The PhD program began in 1989 and has graduated 29 students. There are currently 22 students in the program. For more information, visit our homepage at www.wfubmc.edu/nba/neurosci. Prospective students are encouraged to contact individual neuroscience faculty members.

Core Courses

701. Behavioral Neuroscience. (3) Behavioral neuroscience is a relatively new and rapidly expanding discipline utilizing techniques of molecular biology, neurochemistry, neurophysiology, and psychology to investigate the neurobiological aspects of behavior. A broad overview of the field and its relationship to these individual disciplines is presented. The course provides a survey of the field from the cellular level to the complexity of molar aspects of behavior including learning and memory. An introduction to laboratory models of human neurobiological disorders is included. Roberts, Staff

703. Introduction to Clinical Neuroscience. (3) A survey of the major classes of neurological and psychiatric disorders. Methodology for evaluation of patients, ranging from interview techniques and physical examination, to modern technological approaches, is discussed. Includes lectures on clinically relevant basic research. Students write a grant proposal that aims to bridge a gap in pathophysiological knowledge. Wittenberg, Staff

704. Molecular Neuroscience. (3) This course introduces graduate and advanced undergraduate students to the basic principles of neurobiology as studied by cell and molecular biologists. Lectures introduce invertebrate and vertebrate model neuronal systems and the cellular and molecular methods to study them. Also listed as Neurobiology and Anatomy 704. P—POI. Walker, Staff
707. **Neuropharmacology.** (3) General survey of neuropharmacology, emphasizing neurotransmitters, receptors and their interactions. The course discusses general principles of drug action, including receptor binding, second messengers, and neurotransmitter metabolism. It also surveys neurotransmitter function, including acetylcholine, biogenic amines, excitatory and other amino acids, and neuropeptides. *Jones, Staff*

709. **Seminars in Neuroscience.** (0) A series of research presentations by invited speakers from other institutions that discusses modern concepts, methods, and approaches used in understanding nervous system structure, function, and pathology. This is a required two-semester course for first-year neuroscience students. *Oppenheim, Staff*

712. **Introduction to Neuroscience I.** (5) Neuroscience I is the first in a required two-course series for first-year neuroscience students covering basic topics in the neurosciences. Neuroscience I is offered only in the fall semester and deals with neuroanatomy (six weeks), cellular and molecular neuroscience (six weeks), and developmental neuroscience (three weeks). Approximately one third of the course includes laboratory work in neuroanatomy. *Oppenheim, Staff*

713. **Introduction to Neuroscience II.** (4) Neuroscience II is the second in the series of required courses for first-year neuroscience graduate students covering basic topics in the neurosciences. Topics covered include: developmental neuroscience (3 weeks), sensory (six weeks) and motor systems (six weeks), as well as cognitive and computational neuroscience. Lectures are given by faculty in the neuroscience program. Additional participation is required outside of lecture in the form of a presentation at the end of the semester. P—Neuroscience 712. *Oppenheim, Staff*

715. **Neuroscience Tutorial.** (0) A tutorial format course required of all PhD students in the neuroscience program in the fall and spring semesters. A one-hour presentation by faculty and students of current research topics being conducted in the neuroscience program followed by a one-hour discussion of the topic and of recent research or review articles in the same area. *Oppenheim, Staff*

717. **Summer Neuroscience Tutorial.** (1) A summer session tutorial format course required of all PhD students in the neuroscience program. A one-hour presentation by students on their current research. Students are evaluated by faculty and peers on their presentation and given an overall assessment of their introduction, methods, graphics, explanation of data, conclusions, and speaking style and rapport with the audience. *Oppenheim, Staff*

718. **Developmental Psychobiology.** (3) This course surveys topics from a lifespan developmental perspective which includes: history, principles and concepts, development of the nervous system, the role of development in evolution, epigenesis, neural function in larva and fetus, sensory development, maternal stress and fetal programming, effects of parenting and early experience, hormonal influences on neurodevelopment learning and cognition, puberty, adolescence and the development of sexual behavior, abnormal development of brain and behavior, age-related changes in brain and behavior, plasticity in adult brain, and aging and memory. P—Neuroscience 712 and 713. *Shively, Oppenheim*

725, 726. **Neuroscience Research.** (1-12) Laboratory research in all areas of modern neurobiology, including studies done as part of the first-year research rotations and the requirements for the doctoral dissertation. *Staff*

Advanced Courses and Seminars

626. **Learning Theory and Research.** See Psychology.

629. **Perception.** See Psychology.
633. Motivation of Behavior. See Psychology.

661. Operant Conditioning and Behavior Modification. See Psychology.

702. Neuroscience and Animal Behavior. Seminar-style course including discussion, research projects, presentations, and trips to observe animals in the field. This survey of laboratory and field research considers current issues in the context of classic animal behavior. P—POI. Shiely

706. Neuropeptides, Neurotransmitters and Receptors. (2) Topics course dealing with specialized areas of neuropharmacology. Topics include molecular biology of neurotransmitter receptors, second messenger systems, and regulation of neuropeptides and neurotransmitters. Childers

710. Special Topics in the History of Neuroscience. (2) Discussions of important historical milestones and individual contributions to the present day conception of nervous system structure, function, and pathology. Oppenheim

711. Special Topics in Developmental Neurobiology. (2) A course designed to focus on a specific theme each semester, including such topics as: cell death and regressive events, synaptogenesis, determination and differentiation, axonal guidance and pathway formation, neuronglia interactions, and neurotrophic agents. Oppenheim, Brunso-Bechtold, Johnson

714. The Development of the Synapse and Synaptic Function. (3) An examination of the morphological and physiological differentiation of vertebrate synapses in the peripheral and central nervous system. P—Neuroscience 701, 709, 710. Staff

715. Research Design and Analysis in Psychology. See Psychology.

716. Neurotrophic Factors. (2) This course reviews the history of the neurotrophic hypothesis and neurotrophic molecules. The current status of the neurotrophic hypothesis is analyzed. Student skills in analysis and criticism of original literature (including discussion of experimental design and written expression of hypothesis testing) are developed. Johnson, Oppenheim

720. Biological Psychology. See Psychology.

728. Neurotoxicology. See Physiology and Pharmacology.

730. Physiology and Pharmacology of Aging. See Physiology and Pharmacology.

731. Molecular Biology. See Biochemistry and Molecular Biology.

736. Neuroendocrinology. See Physiology and Pharmacology.

750. Neuropsychology and Learning Disabilities. (3) Language, perceptual/motor, memory, attentional, and emotional deficits arising from neuropsychological factors are studied in the context of brain functioning and information processing and applied to learning disabilities in children, in both theoretical and practical terms. Also listed as Psychology 767. P—POI. Wood

752. Developmental Neurobiology II. See Neurobiology and Anatomy.

753. Developmental Neurobiology III. See Neurobiology and Anatomy.

753. Psychophysiology and Psychopathology of Learning Disabilities. (3) Neurogenetic and developmental origins of learning and cognitive disabilities are reviewed, with particular emphasis on recognition and management of the physiological and emotional diatheses. P—Neuroscience 750 or POI as well as student’s major department. Wood
754. Inter-professional and Ethical Issues in Learning Disabilities. (3) A comprehensive review of quality assurance, inter-professional relations and protection of the welfare of learning or cognitively disabled students, patients, and research subjects with emphasis on the implications of recent advances in the neuroscience literature. P—POI. Wood

755, 756, 757. Practicum in Neuropsychology and Learning Disabilities. (1, 3) Weekly on-site supervised work experience in an applied learning disability setting (e.g. educational, psychological, medical, legal). P—current state government issued practice credentials by state department of education for teachers, state licensing board for psychologists or physicians, or the state bar association for attorneys. Wood

764. Sensory Biology. See Biology.

781. Neuroscience of Music. (3) The current literature on music perception and production is reviewed, with an emphasis both on its functional neuroanatomy and on the cognitive consequences of music instruction. P—POI. Burdette, Wood

782. Readings and Research in Neuropsychology. (1-3) Allows the graduate student, working under the supervision of a faculty member, to pursue and receive credit for a special project in an area not covered by regular courses or a special research project not related to the master’s thesis. Supervising faculty member and credit hours for the course are determined by graduate committee prior to registration. Also listed as Psychology 782. Fall and spring. Wood

783, 784. Readings on Current Issues in Neurobiology. (1-3) Designed to provide an opportunity for students to participate in in-depth readings and discussions with faculty on specific hot topics in the field (e.g. adult neurogenesis, neurodegenerative therapy, drug abuse, etc.). Students are responsible for choosing an appropriate faculty member, and establishing together a format and credit hours for the class. Wood

Physics

Reynolda Campus

Chair G. Eric Matthews

Reynolds Professors Jacquelyn Fetrow, Richard T. Williams

Professors Paul R. Anderson, Keith D. Bonin, Natalie A. W. Holzwarth, William C. Kerr, G. Eric Matthews

Professors Emeritus Robert Brehme, George M. Holzwarth, Howard Shields, George P. Williams Jr.

Z. Smith Reynolds Foundation Fellows and Associate Professors
Gregory B. Cook, Daniel Kim-Shapiro

Associate Professors Eric D. Carlson, David Carroll

Assistant Professors Martin Guthold, Jed Macosko, Fred Salsbury

Adjunct Associate Professor Peter Santiago

Adjunct Assistant Professors John D. Bourland, Timothy E. Miller

The Department of Physics offers programs of study leading to the MS and PhD degrees. Opportunities for study are those usually associated with large research universities, while the atmosphere of a small liberal arts university with an ideal faculty/student ratio is maintained.
For admission to graduate work, the entering student should have a knowledge of undergraduate mechanics, electricity and magnetism, thermodynamics, and quantum physics. The course of study for each student is planned in conference with the graduate adviser after an evaluation of academic background and experience. Deficiencies may be removed during the first year of study.

For the MS degree, the student’s course of study must include Physics 711, 712, and 741, as well as participation in departmental seminars. These seminars, in fields of special interest, are regularly scheduled and usually feature outside speakers. In addition to satisfying the residency and course requirements, the student must be admitted to candidacy, complete an acceptable thesis under faculty supervision, and pass an oral examination in its defense.

For the PhD degree, the student’s course of study must include Physics 711, 712, 741, 742, and 770 unless satisfactorily completed elsewhere. Students must also take three elective courses at the graduate level (600 or 700 level), one of which must be in physics. To graduate, students must achieve a 3.0 grade point average in graduate courses within the physics department. A research advisory committee, appointed after completion of the preliminary examination, determines the additional courses needed for the PhD, such as Advanced Quantum Mechanics, Solid State Physics, General Relativity, Nonlinear Optics, Math or Computer Science, Medical Engineering, etc. The University’s preliminary examination requirement is satisfied by passing a written preliminary examination at the end of the first year of graduate study. The examination may be retaken once, at the end of the second year. Within twelve months of completing the preliminary examination, the student submits to his or her individual advisory committee, and defends orally a dissertation research plan. The research advisory committee meets annually with the student to ensure timely progress toward the degree. Upon completion of the research in the approved plan, the student writes his or her dissertation, presents it to the department, and defends it orally as prescribed by the Graduate School.

The research interests of the graduate faculty are in experimental and computational biophysics, experimental and theoretical solid state physics, particle physics, and relativity. Well-equipped laboratories are available for subpicosecond pulsed laser studies, time-resolved biospectroscopy optical tweezers to study nanomotors, surface physics, atomic force microscopy, single molecule manipulation, biochemical DNA techniques, aptamer and fibrin research, dynamics of macromolecules, and video microscopy. Theoretical research is supported by a 24 processor IBM SP2 supercomputer and Linux clusters.

For more details on the PhD program, visit www.wfu.edu/physics or write to the chair of the graduate committee. Departmental graduate committee: Bonin (chair), Cook, Carroll, Fetrow, Guthold, Matthews, R. Williams.

For Advanced Undergraduates and Graduate Students

601, 602. Physics Seminar. (0, 0) Discussion of contemporary research, usually with visiting scientists. Attendance required of junior and senior physics majors.

604. Physics of Medical Imaging. (3) Physical principles of x-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), and ultrasonic imaging.

607. Biophysics. (3) An introduction to the structure, dynamic behavior, and function of DNA and proteins, and a survey of membrane biophysics. The physical principles of structure determination by x-ray, NMR, and optical methods are emphasized.

610. Extragalactic Astronomy and Cosmology. (3) Topics covered include galactic structure, models for galaxies and galaxy formation, the large-scale structure of the universe, the Big Bang
model of the universe, physical processes such as nucleosynthesis in the early universe, and observational cosmology.

612. *Introduction to Stellar Astronomy.* (3) The physics of stellar atmospheres and interiors. Topics covered include radiation transfer, absorption and emission of radiation, formation of spectra, models for stellar interiors, nuclear fusion reactions and stellar evolution. Methods of measuring distances to stars and interpretation of stellar spectra are included. P—Mathematics 601.

620. *Physics of Biological Macromolecules.* (3) The physics of biologically important molecules, especially proteins and nucleic acids. Topics covered include the physical basis of biomolecular structure, the energetics and statistical mechanics of biomolecular dynamics, and the electrostatics and solvation of biomolecules. This course is designed to be accessible to students with biochemistry, chemistry, or physics backgrounds. P—Physics 651 or Chemistry 641, or POI. Fetrow, Salsbury

623. *Computational Molecular Biophysics Laboratory.* (1) Application of techniques in molecular modeling, including energy minimization, molecular dynamics simulation, and conformational analysis, to biological macromolecules. C—Physics 620 or POI. Fetrow, Salsbury

625. *Biophysical Methods Laboratory.* (1) Laboratory involves experiments using various biophysical techniques such as electron paramagnetic resonance, atomic force microscopy, stopped-flow absorption spectroscopy, x-ray diffraction, and gel electrophoresis. C—Physics 607. Guthold, Kim-Shapiro

637. *Analytical Mechanics.* (1.5) The Lagrangian and Hamiltonian formulations of mechanics with applications. This course is taught in the first half of the fall semester.

639, 640. *Electricity and Magnetism.* (1.5, 3) Electrostatics, magnetostatics, dielectric and magnetic materials, Maxwell’s equations and applications to radiation, relativistic formulation. The first half course is taught in the second half of the fall semester, following Physics 637. The other course is taught in the spring semester. These should be taken in sequence. P—Physics 601.

643, 644. *Quantum Physics.* (3,3) Application of the elementary principles of quantum mechanics to atomic, molecular, solid state, and nuclear physics.

651. *Thermodynamics and Statistical Mechanics.* (3) Introduction to classical and statistical thermodynamics and distribution functions.

652. *Physical Optics and Optical Design.* (4) Interaction of light with materials; diffraction and coherent optics; ray trace methods of optical design. Lab—three hours.

661. *Biophysics Seminar.* (1) Seminal and current publications in biophysics are studied. Each week a member of the class makes an oral presentation on a chosen publication and leads the ensuing discussion. Does not fulfill course requirements for Master’s or PhD degrees. Staff

663. *Condensed Matter Seminar.* (1) Seminal and current publications in condensed matter physics are studied. Each week a member of the class makes an oral presentation on a chosen publication and leads the ensuing discussion. Does not fulfill course requirements for Master’s or PhD degrees. Staff

681, 682. *Research.* (1-3, 1-3) Library, conference, and laboratory work performed on an individual basis.
685. **Bioinformatics.** (3) An introduction to bioinformatics and computing techniques essential to current biomedical research. Topics include genome and protein sequence and protein structure databases, algorithms for bioinformatics research, and computer architecture and environmental considerations. P—Introductory courses in biology, chemistry, and molecular biology or biochemistry or POI. Also listed as Computer Science 685. *Burg, Fetrow, John, Miller*

For Graduate Students

711. **Classical Mechanics and Mathematical Methods.** (3) A study of variational principles and Lagrange’s equations, the rigid body equations of motion, the Hamilton equations of motion and canonical transformations, Hamilton-Jacobi theory, and applications to continuous systems and fields. *Kerr, N. Holzwarth*

712. **Electromagnetism.** (3) A study of Maxwell’s equations, boundary value problems for the electromagnetic field, and radiation; the ponderomotive equation for the charged particle. *N. Holzwarth*

715. **Nonlinear Optics and Quantum Electronics.** (4) Nonlinear phenomena in laser spectroscopy, the quantum nature of optical processes in matter, and topics in laser physics. Lab—three hours. *R. Williams*

731. **Elementary Particle Physics.** (3) Fundamentals of contemporary elementary particle physics. *Carlson*

741, 742. **Quantum Mechanics.** (3, 3) The study of the foundations of modern quantum theory, with an emphasis on the meaning of the wave equation, operators, eigen-functions, eigenvalues, commutators, matrix mechanics, spin, and scattering. *Anderson, N. Holzwarth, Kerr, Carlson*

743. **Advanced Quantum Mechanics.** (3) Advanced topics in quantum mechanics, including an introduction to relativistic quantum theory, quantum electrodynamics, and many particle treatments. *Anderson, N. Holzwarth, Kerr, Carlson*

744. **Introduction to Quantum Field Theory.** (3) An introduction to relativistic quantum field theory, including canonical quantization, path integral techniques, perturbation theory, and renormalization. *Anderson, N. Holzwarth, Kerr, Carlson*

745. **Group Theory.** (3) Group theory and its applications to the quantum mechanics of atoms, molecules, and solids. *Carlson*

752. **Solid State Physics.** (3) An introductory course including the structure of perfect crystalline solids, their thermal electronic properties, the free electron and band theory of metals, imperfect crystals, transport properties, and semiconductors. *Carroll, Kerr, N. Holzwarth, Matthews, R. Williams*

754. **Surface Science.** (3) Experimental and theoretical methods for the study of surfaces and interfaces. Lab—1.5 hours. *N. Holzwarth, R. Williams*

756. **Seminar on Defects in the Solid State.** (2) The generation and interactions of point and line defects such as color centers, vacancies, and dislocations treated. *Matthews, R. Williams*

765. **Gravitational and Particle Theory Seminar.** (1) Topics in general relativity, particle physics, and astrophysics are studied. Each week a faculty member or member of the class makes an oral presentation on a chosen topic and leads the ensuing discussion. Does not fulfill course requirements for Master’s or PhD degrees. *Staff*
770. Statistical Mechanics. (3) An introduction to probability theory and to the physics of systems containing large numbers of particles from the classical as well as the quantum point of view. Kerr

785. Topics in Theoretical Physics. (1-3) Selected topics of current interest in theoretical physics not included in other courses. Carlson, N. Holzwarth, Kerr, Anderson, Cook

787. Advanced Topics in Physics. (1-3) Lectures on advanced topics in physics that depend on the subspecialty of the instructor. Topics range from medical physics to special topics in biophysics, condensed matter physics, or quantum optics. Staff

791, 792. Thesis Research. (1-9) Staff

793. Summer Research. This is a course for summer research by continuing graduate students working with their adviser. Staff

891, 892. Dissertation Research. (Hours open) Staff

Physiology and Pharmacology

Bowman Gray Campus

Chair James E. Smith
Associate Professors Jing-Yu Chang, Robert E. Hampson, Anthony Liguori, Thomas J. Martin, Jeffrey Weiner
Assistant Professors Kristin Anstrom, Allyson Bennett, Eugueni A. Boudygine, Michael F. Callahan, Paul Czoty, James Daunais, Sara R. Jones, Brian McCool, Drake Morgan, Peter Pierre, Stephen Walker, Shou Y. Zhuang
Instructor Alexey Azarov
Research Associate Yolanda Mateo
Associate Faculty Anthony Atala, David Averill, Martin Bitzan, Bridget K. Brosnihan, Vardaman M. Buckalew, Jr., Mark Chapell, Che-Ping Cheng, Carol Cunningham, Thomas D. Dubose Jr., Delrae Eckman, Carolos Ferrario, Jorge Figueroa, Susan Hutson, Gregory L. Kucera, David Lyons, Josef Mychalecky, R. Mark Payne, Raymond B. Penn, James C. Rose, Bruce K. Rubin, David C. Sane, Shay Soker, Thomas L. Smith, E. Ann Tallent, Richard Weinberg, George F. Wittenberg, James Yoo
Adjunct Professors Michael Aschner, Kim Tan, Kent E. Vrana
Adjunct Associate Professors Azeez Aileru, J. Donald deBethizy, David Doolittle, Gary Hellman, Allison Miller, Walter S. Pritchard, Darrell Sumner
Adjunct Assistant Professors John Absher, William Caldwell

The Department of Physiology and Pharmacology offers graduate work leading to a PhD degree. The graduate program provides advanced courses and seminars in physiology and
pharmacology for students who hold a BA, BS, or higher degree and who seek a PhD degree with intent to pursue an academic or research career.

The program is individualized to meet student needs. Students are expected to obtain a broad background in physiology and pharmacology and in related sciences by taking introductory courses. Through selected advanced courses and seminars, the student is offered the opportunity of exploring topics intensively.

After acquiring basic knowledge of physiology and pharmacology and developing fundamental skills and techniques of investigation, a student embarks on an area of research which is the basis of a dissertation. The research program is guided by the adviser and a departmental dissertation committee.

Research interests of the department are focused in the areas of aging, substance abuse, cardiovascular control, renal function, the endocrine system, toxicology, and neuroscience. Collaborative research in the department provides a multifaceted approach resulting in a molecular, cellular, and systems level of analysis.

The PhD degree has been offered since 1941.

701. Phys/Pharm I: Cell and Molecular Pharmacology. (3) This course is the first required course for physiology and pharmacology students and introduces students to basic cellular and molecular biological principles. Topics ultimately integrate these principles with receptor physiology and pharmacology in the central nervous system. McCool, Staff

702. Phys/Pharm II: Basic Physiology and Pharmacology. (4-6) Instruction in fundamentals of physiology and pharmacology. Areas addressed include basic features of physiological systems including muscle, renal, endocrine, and cardiovascular systems, as well as basic pharmacological concepts such as pharmacokinetics. Daunais, Staff

703. Phys/Pharm III: Systems Pharmacology. (4) Instruction in pharmacological systems. Topics covered include neuroanatomy, neurotransmitters and receptors, and drug classes. Martin, Staff

704. Phys/Pharm IV: Integrative Physiology and Pharmacology. (5) Advanced instruction in specialty areas in physiology and pharmacology. Focus is on integrating concepts from previous courses to discuss advanced topics including psychiatric and physiological disease states. Jones, Staff

705, 706. Journal Club. (1) Recent papers by departmental and visiting faculty are presented and critiqued by graduate students. Czoty

711, 712. Advanced Topics. (1-6) An advanced lecture and conference course that considers various topics of current research interest and concepts under rapid development. Areas of interest within the department are covered on a rotating basis. Additional topics can be offered by announcement.

713, 714. Advanced Readings. (1-4) Individualized instruction involving detailed review of literature pertaining to a specific area of interest in physiology or pharmacology. Staff

715, 716. Current Topics. (1) An interactive course aimed at a critical examination of current issues in substance abuse research. Topics to be discussed include: genetic basis of substance abuse, cellular mechanisms of drug action, neurochemical approaches, animal models, development of treatment strategies, imaging and principles of studies of human subjects. Porrino, Staff

717, 718. Current Topics in Drug Abuse. (2) Provides students with perspective in the problem of drug abuse. Defines the basic issues central to the field of drug abuse, including concepts
of tolerance, physical dependence and reinforcement mechanisms, and relate these issues to the current problems of drug abuse in society. Describes how current research in drug abuse contributes to the design of rational treatment and prevention programs. Childers

722. Behavioral Pharmacology. (3) Focuses on behavioral factors that influence the effects of drugs. Material presented provides a detailed review of the rate-dependent, reinforcing, and stimulus effects of drugs. Additional topics include behavioral factors related to tolerance and sensitization and a review of animal models of drug action. Nader, Staff

724. Biology of Alcohol Abuse—Alcoholism. (2) Designed to instruct graduate and postdoctoral students on the pharmacological, physiological, and behavioral effects of alcohol. Lectures cover topics ranging from the epidemiology and etiology of alcohol abuse and alcoholism to the basic biochemistry, metabolism, and pharmacokinetics of alcohol in the mammalian system. Lectures concerning effects of alcohol on specific organ systems include the hepatic system, the endocrine system, reproductive systems, the cardiovascular system, the gastrointestinal system, and the renal and pancreatic systems. Lectures focusing on the effects of alcohol on the nervous system include neuroreceptor interactions, ethanol’s effects on intracellular signaling processes, neuroanatomical substrates for the actions of alcohol, systems electrophysiology, and mechanism of the behavioral effects of alcohol such as the reinforcing effects, anxiolytic effects, amnestic effects, and motor impairing effects. The neuroscience lectures provide the basis for an exploration of the conditions leading to tolerance and dependence, and how the brain adapts to prolonged exposure to alcohol. Grant

726. General Toxicology. (2) A lecture course designed to provide the student with the basic concepts and mechanisms underlying toxic responses to xenobiotics. Emphasis is placed on the toxicology relevant to the diagnosis and prevention of poisoning in humans from occupational, environmental, or iatrogenic origin. Broad area studies are general principles of toxicology, common toxic agents, and target organs. Experimental models and methodologies of risk assessment is explored. Aschner, Staff

728. Neurotoxicology. (2) This course identifies damage specific to the central nervous system that occurs after exposure to neurotoxic compounds. Emphasis is placed on cellular mechanisms that are altered and the classes of neurotoxic agents that induce cell damage. Experimental models and risk assessment are explored. Aschner, Staff

730. Physiology and Pharmacology of Aging. (2) Seminar on the physiology of aging and the study of drugs and the aging process. Presentations address current topics relevant to age-dependent changes in various organ systems and theories of aging. The topics of age-related alterations in drug absorption, kinetics, and metabolism are also examined. Emphasis on degenerative diseases and mechanisms of action. Sonntag, Staff

731. Perinatal Physiology I. (2) Discussion of literature in physiology and pharmacology concerning developmental aspects of mammalian organ systems. Particular emphasis is placed on the endocrine and cardiovascular systems. Rose

732. Perinatal Physiology II. (2) Discussion of literature in physiology and pharmacology concerning developmental aspects of mammalian organ systems. Particular emphasis is placed on endocrinology and developmental pharmacology. Rose

734. Drug Discovery and Development. (2) Introduces students to the intricacies of the pharmaceutical industry. Emphasis is on providing an overview of drug discovery from both the pharmacologic and business perspective. Students receive an overview of drug metabolism and pharmacokinetics, drug discovery, pre-clinical and clinical testing, and bioinformatics. P—Pharmacology 782 or Physiology 782 or permission of course director. Vrana
736. Neuroendocrinology. (2) Recent advances in neuroendocrinology, with emphasis on receptor-linked functions, hormonally-active drugs, and influences of pharmacologic agents on neuroendocrine function. In a tutorial setting, students study principles of structure and function, examine current technology and published literature, and design and critique experimental approaches. Eldridge

738. Cardiovascular Physiology and Pharmacology. (2) Lectures, readings and discussions center on normal and abnormal cardiovascular physiology and recent developments in drugs affecting the heart and circulation. Averill, Staff.

740. Neuropharmacology. (3) General survey of neuropharmacology, emphasizing neurotransmitters, receptors and their interactions. The course discusses general principles of drug action, including receptor binding, second messengers, and neurotransmitter metabolism. It surveys neurotransmitter function, including acetylcholine, biogenic amines, excitatory and other amino acids, and neuropeptides. Childers, Staff

741. Quantitative Methods in Behavioral Science. (2) Addresses applied statistical approaches within common behavioral research studies. General focus is on selection of the most appropriate test for research aims and hypotheses as well as computational methods. Specific topics include power analyses, effect sizes, analyses of variance, analyses of covariance, regression techniques, multivariate statistics, and post hoc testing. Ligouri, Staff

797, 798. Research. Mentored research on physiological or pharmacological problems in preparation for the thesis. Staff

Psychology

Reynolda Campus

Chair Mark R. Leary

William L. Poteat Professor of Psychology Deborah L. Best

Thurman D. Kitchen Professor of Psychology Mark R. Leary

Professors Robert C. Beck, Terry D. Blumenthal, Dale Dagenbach, Charles L. Richman, Carol A. Shively

Ollen R. Nalley Associate Professor William W. Fleeson

Associate Professors Christy M. Buchanan, Batja Mesquita, James A. Schirillo, Catherine E. Seta, Cecilia H. Solano, Eric R. Stone

Assistant Professors R. Michael Furr, Janine M. Jennings, Karen L. Roper

Adjunct Professors Jay R. Kaplan, W. Jack Rejeski Jr., Frank B. Wood

Adjunct Associate Professor C. Drew Edwards

The Department of Psychology offers graduate work leading to a research-oriented general master’s degree. The general MA emphasizes the scientific, theoretical, and research bases common to all areas of psychology (e.g., learning, social, motivation, cognition, personality, developmental, statistics).

The program is designed for capable students who expect to continue to the PhD degree but wish to begin graduate work in a department where they receive a high degree of individual attention from the faculty. The program is also appropriate for students who wish to terminate graduate work with the master’s degree.
The applicant is expected to have an undergraduate major in psychology at an accredited institution. Such a major includes courses in experimental psychology, statistics, and history and systems of psychology, with a well-rounded selection of other psychology courses. Students who are judged to be deficient in these aspects are required to remedy such deficiencies after entering the Graduate School.

The department has unusually good facilities and library materials for research. The areas in which research is currently being conducted include learning, motivation, perception, emotion, cognitive processes, neuropsychology, clinical counseling, child development, aging, personality, social, psychological testing, cross-cultural, and primate behavior.

Most students take two academic years to complete the program. Students who hold assistantships are required to spend two years in residence. In addition to satisfying the University requirements for the degree, all graduate students must write a major research paper and pass a departmental qualifying examination.

The MA degree has been offered since 1964. Departmental graduate committee: Dagenbach (chair), Beck, Furr, Jennings, Seta, Stone, Leary (ex officio).

For Advanced Undergraduates and Graduate Students

613. History and Systems of Psychology. (3) The development of psychological thought and research from ancient Greece to present trends, with emphasis on intensive examination of original sources.

620. Physiological Psychology. (3) Neurophysiological and neuroanatomical explanations of behavior.

622. Psychopharmacology. (4) A survey of the influences of a wide range of psychoactive drugs, both legal and illegal, on human physiology, cognition, and behavior.

626. Learning Theory and Research. (3) Theory and current research in learning with emphasis on applications of learning principles for behavior modification and comparisons across species.

629. Perception. (3) Survey of theory and research findings on various sensory systems (vision, hearing, touch, taste).

635. Fundamentals of Human Motivation. (3) Description and analysis of some fundamental motivational phenomena, with special reference to human problems; includes reward and punishment, conflict anxiety, affection, needs for achievement and power, aggression, creativity, and curiosity.

638. Emotion. (3) Survey of theory, methods, and research in the area of emotion. Developmental, cultural, social-psychological, physiological, personality, and clinical perspectives on emotions are given.

642. Current Issues in Developmental Psychology. (3) Intensive examination of selected theoretical or research issues in this area.

646. Psychological Disorders of Childhood. (3) Survey of problems including conduct disorders, attention deficit disorders, depression, and autism. Emphasis on causes, prevention, treatment, and the relationships of disorders to normal child development and family life.

651. Personality Research. (3) The application of a variety of research procedures to the study of human personality. Research projects required.

655. Research in Social Psychology. (3) Methodological issues and selected research in the study of the human as a social animal. Field research projects required.

657. Cross-Cultural Psychology. (3) An examination of differences in psychological processes (e.g., attitudes, perception, mental health, organizational behavior) associated with cultural variation.

659. Psychology of Gender. (3) An exploration of the psychological similarities and differences between human males and females, including consideration of social, cognitive, motivational, biological, and developmental determinants of behavior.

661. Operant Conditioning and Behavior Modification. (3) Principles, theory, and experimental research in operant learning, with applications to the modification of behavior in various populations and situations.

662. Psychological Testing. (3) Theory and application of psychological assessment procedures in the areas of intelligence, aptitude, vocational interest, and personality.

663. Survey of Clinical Psychology. (3) An overview of the field of clinical and other selected areas of applied psychology.

667. Effectiveness in Parent/Child Relations. (3) A survey of popular approaches to child-rearing, with examination of the research literature on parent/child interaction and actual training in parental skills.

669. Contemporary Applications of Psychology. (3) Supervised field experience in applied psychology.

674. Judgment and Decision Making. (3) A theoretical and empirical examination of how people make decisions and judgments about their lives and the world, and how these processes can be improved.

678. Instrumentation for Psychological Research. (1) Lecture/demonstration presentation of electrical and mechanical equipment, followed by practical application in small group project work. Assumes no prior knowledge of electricity or construction.

692. Contemporary Problems in Psychology. (3) Seminar treatment of current theory and research in several frontier areas of psychology. Principally for senior majors planning to attend graduate school.
For Graduate Students

715, 716. Research Design and Analysis in Psychology. (3, 3) Intensive study of the design of experiments and the analysis of research data in psychology. These courses cover conventional methods, including univariate and multivariate analysis of variance, multiple regression, and factor analysis. Requires previous or concurrent course work in basic statistics. Written permission of instructor required. Furr, Leary, Stone

720. Biological Psychology. (3) The study of the biological basis of behavior and mental processes, with emphasis on current developments in neuroscience, and human applications of this information. Laboratory work in neuroanatomy and psychophysiology. Blumenthal

728. Human Cognition. (3) Current theory and research on functional characteristics and neural correlates of cognitive processes in such areas as memory, attention, and language. Dagenbach

738. Learning and Motivation. (3) Basic learning principles and concepts and related motivational concepts. Beck

742. Seminar in Developmental Psychology. (3) A critical examination of the major findings, principles, and theories of development, with attention to both human and lower-animal research. Buchanan

752. Seminar in Social Psychology. (3) Content and methodology of social psychology examined through a critical and comparative analysis of contemporary theory and literature. Seta

757. Seminar in Personality Psychology. (3) Evaluation of contemporary solutions to important problems in personality psychology, with special attention to historical context and anticipated future directions. Fleeson, Furr

761. Theory and Practice of Psychological Testing. (3) In-depth study of intelligence and ability testing as carried out by psychologists. Comparative analysis and examination of standard tests in these areas, with special focus on techniques of administration and interpretation. Edwards

767. Neuropsychology and Learning Disabilities. (3) Language, perceptual/motor, memory, attentional, and emotional deficits arising from neurological factors are studied in the context of brain functioning and information processing and applied to learning disabilities in children, in both theoretical and practical terms. P—POI. Summer only. Wood

770, 771, 772, 773. Psychology Practicum. (1-3) Work experience in an applied psychology setting (such as clinical or industrial) under a qualified supervisor. Staff

782. Readings and Research in Psychology. (1, 2, or 3) This listing allows the graduate student, working under the supervision of a faculty member, to pursue and receive credit for 1) a special reading project in an area not covered by regular courses or 2) a special research project not related to the master’s thesis. Supervising faculty member and hours credit for which enrolled determined by graduate committee prior to registration. Also listed as Neuroscience 782. Fall and spring. Staff

785, 786. Directed Thesis Research. (3, 3) First-year students will undertake a substantial research project under the direction of their adviser. Staff

791, 792. Thesis Research. (1-9, 1-9) Staff
The Department of Religion offers the MA in religion. The program offers a rigorous learning environment enriched by extended personal interaction with departmental faculty. The degree serves as either terminal degree or as preparation for further graduate study.

Ordinarily, applicants for admission into the MA in religion program have majored in religion or religious studies during their undergraduate coursework. Admission is based on the degree of success in previous courses in religion, the clarity of the applicant’s educational goals, and the general potential for successfully engaging in graduate level work within the program. Applicants will not be admitted if it is likely that they cannot fulfill any of the program requirements, including the foreign language requirement. Any student admitted into the program without what the Graduate Committee considers to be a well-rounded undergraduate course of study in religion will be required to take remedial coursework without graduate credit.

In addition to the University’s requirements for the MA, the Department of Religion requires proficiency in a modern foreign language, normally German. Another modern foreign language may be substituted only if the student, with the consent of their adviser, can show that it is more relevant to their thesis research. For theses written in the areas of Old Testament, New Testament, or Patristics, the primary ancient languages are required in addition to the modern foreign language requirement. Among the twenty-four required credit hours for the degree, a student must successfully complete Religion 705 and 706 for admission to candidacy.

In the list of courses offered with graduate credit, not every course is scheduled every year, but usually two courses at the 700-level are offered in each semester. Substantive efforts are made to offer courses that are needed by students in either graduate course of study, and student input is welcome in determining the course schedule from semester to semester.

The general MA in religion program began in 1967. Departmental graduate committee: Hoglund (chair), Ford.

For Advanced Undergraduates and Graduate Students

600. Meaning of Religion. (3) A phenomenological study of different ways of defining religion, including views of representative philosophers, psychologists, sociologists, anthropologists, theologians, and historians of religion.

601. Myth. (3) A study of the interpretation of myth, with a focus on the meaning and values implicit in the myths of contemporary culture.

602. Mysticism. (3) A study of mysticism from a multi-religious perspective with emphasis on the psychological and sociological aspects of this phenomenon.
603. Religion and Science. (3) An examination of the ways in which religion and science have conflicted with, criticized, and complemented one another in the history of Western thought from Galileo to the present.

608. Sacred Scripture in the Traditions of Abraham. Comparative study of sacred texts in Judaism, Christianity, and Islam with particular attention to the issues authority, function, and interpretation.

610. The Prophetic Literature of the Old Testament. (3) An examination of the development and theological contents of the literary products of Israel’s prophetic movement.

611. The Psalms. (3) A study of the Psalter with particular emphasis on the setting of the Psalms in Israel’s worship.

612. The Critical Study of the Pentateuch. (3) A study of the five traditional books of Moses (the Torah) and various lines of analysis that modern Biblical critics have used to interpret their composition and role in the development of Israelite theological thought.

614. Ancient Israel and Her Neighbors. (1.5) A study of ancient Near Eastern archeology with special emphasis on Israel’s relationships with surrounding peoples.

615, 616. Field Research in Biblical Archeology. (3, 3) A study of the religion and culture of the ancient Near East through the excavation and interpretation of an ancient site.

617. The Wisdom Literature. (3) An examination of the development, literary characteristics, and theological contents of the works of ancient Israel’s sages.

618. Feminist and Contemporary Interpretations of the Bible. (3) A study of feminist and contemporary approaches to the Bible in light of the history of interpretation and a range of contemporary concerns and interpretive contexts.

620. The Search For Jesus. (3) An introduction to the issues, assumptions, evidence, and debate that shapes the continuing quest for the historical Jesus.

622. The General Epistles. (3) An exegetical study of two or more of the General Epistles with emphasis on the setting of the epistles in the life of the early church.

623. The Parables of Jesus. (3) An examination of the historical, social, cultural, and theological significance of the parables of Jesus as recorded in the synoptic gospels.

630. **Comparative Religious Ethics.** (3) A comparative study of the moral values and socio-ethical positions in the major religious traditions of the world, with particular focus on their various methods of reasoning and sources of authority.

631. **Christian Ethics and Social Justice.** (3) An inquiry from a Christian perspective into different theoretical and practical responses to the issue of justice in society.

632. **Religion and Public Life.** (3) An examination of alternative historical paradigms within specific religious traditions and the implications of those paradigms for the public activity of their adherents. Traditions and topics, including religious leadership, social entrepreneurship and the separation of church and state, may vary with instructor.

633. **Christian Ethics and the Professions.** (1.5) A study of the nature of the professions in contemporary society, their fundamental ethical suppositions, and the significance of being Christian for professional conduct.

635. **Christian Ethics and the Problem of War.** (3) An examination of the causes and characteristics of war, various Christian response to it, and approaches to peacemaking, with attention to selected contemporary issues.

636. **Religious Traditions and Human Rights.** (3) A study of the relationships and tensions between religious traditions and human rights, with illustrations from historical and contemporary issues and movements.

638. **Religion, Ethics, and Politics.** (3) An examination of ethical issues in religion and politics using materials from a variety of sources and historical periods.

639. **Religions of Africa.** (3) An interdisciplinary study of the growth and transformations of Africa’s major religious traditions (Christianity, Islam, and the indigenous religions), and of their relations with secular social changes.

640. **Men’s Studies and Religion.** (3) An examination of the ways in which masculine sex-role expectations and male experiences have both shaped religious ideas, symbols, rituals, institutions, and forms of spirituality and been shaped by them. Attention is given to the ways in which race, class, and sexual orientation affect those dynamics.

641. **Civil Rights and Black Consciousness Movements.** (3) A social and religious history of the African-American struggle for citizenship rights and freedom from World War II to the present.

642. **Religion, Culture, and Modernity.** (3) An inquiry into the origins and development of modernity as idea and ideology, with special emphasis on its significance for non-Western social and religious movements.

643. **The City as Symbol.** (3) A study of the city, past and present, as a unique repository and symbol of religious values and human aspirations.

647. **The Emerging Church in the Two-Thirds World.** (3) An investigation of contemporary Christian communities in Africa, Asia, the Caribbean, and Latin America with special attention to theological, political, and economic activities.

648. **Reconciling Race.** (3) Comparative history of twentieth-century racial oppression, black rebellion, and religious reconciliation. Also listed as History 678.
650. Psychology of Religion. (3) An examination of the psychological elements in the origin, development, and expression of religious experience.

651. Religion and Society. (3) A study of religion as a social phenomenon and its relationship to the structure of society—political, economic, and others, with special focus on the contemporary United States.

654. Religious Development of the Individual. (3) A study of growth and development from infancy through adulthood, with emphasis on the influences of spirituality and mature religion.

655. Theology of Pastoral Care and Counseling. (3) A study of the relationship between theology and the purpose, theories, and methods of pastoral care and counseling.

660. World Religions. (3) An examination of the ideas and practices of major religious traditions in their historical and cultural context. Focus varies with instructor. Kimball

661. The Buddhist World of Thought and Practice. (3) A survey of the development of Buddhism from India to Southeast Asia, China, Tibet, Japan, and the West, focusing on the transformation of Buddhist teachings and practices in these different social and cultural contexts.

662. Islam. (3) An examination of the origins and development of Islam, the world’s second largest religious tradition. Particular attention is given to the formation of Islamic faith and practice as well as contemporary manifestations of Islam in Asia, Africa, and North America.

663. Religions of Japan. (3) A study of the central religious traditions of Japan from pre-history to the present, including Shinto, Buddhism, Zen Buddhism, Christianity, and Confucianism.

664. Conceptions of the Afterlife. (3) An examination of the variety of answers given to the question, “What happens in death?” Particular attention is given to the views of Jews, Christians, Muslims, Hindus, and Buddhists and the ways their views relate to life in this world.

665. History of Religions in America. (3) A study of American religions from Colonial times until the present.

666. Gender and Religion. (3) An examination of the historical and contemporary interaction between religion and sex roles, sexism, and sexuality.

667. The Mystics of the Church. (3) An historical study of the lives and thought of selected Christian mystics with special attention to their religious experience.

668. The Protestant and Catholic Reformations. (3) A study of the origin and development of Reformation theology and ecclesiology.

669. Radical Christian Movements. (3) A study of selected radical movements in the Christian tradition and their relation to contemporary issues.

670. Women and Christianity. (3) A study of the roles and contributions of women within the Christian tradition throughout history, and an analysis of the mechanisms of their oppression.

671. Theology and Sexual Embodiment. (3) A survey of theological responses to human sexuality, with special emphasis on contemporary issues.

672. History of Christian Thought. (1.5, 3) A study of the history of Christian thought, beginning with its Hebraic and Greek backgrounds and tracing its rise and development to modern times. The course may be divided into halves for 1.5 credits each:
 (a) Patristic Thought
 (b) Medieval and Reformation Thought
674. Contemporary Christian Thought. (3) An examination of the major issues and personalities in twentieth-century theology, both Western and non-Western.

676. Twentieth Century Christian Theologians. (3) A study of the major exponents of the Catholic, Protestant, and Orthodox traditions.

677. The Problem of Evil from Job to Shakespeare. (3) A comparative analysis of the source and remedy of evil in Job, Aeschylus, Sophocles, Plato, Dante, and Shakespeare.

678. Aesthetics and Religion. (3) An examination of aesthetic and religious theories of selected thinkers, noting what the arts and religion have in common as modes of perception and expression.

680. The Main Streams of Chinese Philosophy and Religion. (3) An introduction to the most important traditions in Chinese philosophy and religion: Confucianism, Daoism (Taoism), and Chinese Buddhism or Chinese Chan (Zen) Buddhism.

682. Religion and Culture in China. (3) A thematic study of Chinese religious traditions and culture focusing on history, ritual, scripture, and popular practice. Additional topics include cosmology, ancestor veneration, shamanism, divination, and the role of women. Ford

683. The Qur’an. (3) An introduction to the history, content, and main approaches to the sacred book of Islam. The primary focus is on the early centuries of Islam and major developments in the twentieth and twenty-first centuries. Kimball

684. Muhammad: Prophet and Paradigm. (3) An exploration of the issues, assumptions, evidence, and debates that frame the various ways Muslims and non-Muslims understand the prophet of Islam. Kimball

Near Eastern Languages and Literature

111, 112. Elementary Hebrew. (3, 3) A course for beginners in the classical Hebrew of the Bible, with emphasis on the basic principles of Hebrew grammar and the reading of Biblical texts. (Both semesters must be completed.)

113. Standard Literary Arabic. (3) An introduction to the principles of Arabic grammar and a reading of selections from the Quran.

601. Introduction to Semitic Linguistics. (3) A study of the history and structure of four languages from the Hamito-Semitic family of languages.

602. Akkadian I. (3) An analysis of the phonology, morphology, and syntax of the East Semitic languages of the ancient Near East as they relate to the larger family of Semitic languages.

603. Akkadian II. (3) A continuation of Hebrew 302 with further emphasis on building expertise in vocabulary and syntax through the reading of texts from the Middle Babylonian period.
611. Aramaic. (3) The principles of Aramaic morphology, grammar and syntax based on readings from the Bible and other ancient Near Eastern texts. P—Near Eastern Languages and Literature 112 or POI. On request.

For Graduate Students

701, 702. Directed Reading. (1-3, 1-3)

705. Research in Religion. (3) An examination of the major research tools and methodologies in religion, discussion and critique of research currently in progress, and the development of a research model in the student’s area of specialization. Hoglund

708. Religious Language and Symbol. (3) An examination of the distinct use of language in religious discourse, with attention to theoretical understandings of human language, the variety of philosophical efforts to define the validity of religious language, and the role of metaphor and analogy in religious communication. Hoglund

722. The Quest for the Historical Jesus. (3) An investigation of the possibility and relevance of historical knowledge about Jesus through a consideration of the seminal lives of Jesus since the eighteenth century.

740. Seminar in the Sociology of Religion. (3) An examination of selected classical and contemporary texts illustrative of the theories, methods, and purposes of the sociological study of religion.

751. Theory and Practice of Pastoral Counseling. (3) A study of counseling methodologies, psychotherapeutic techniques, personal development, and human behavior in terms of the implications for pastoral counseling.

755, 756. Clinical Pastoral Education. (3,3) Clinical experience in pastoral care, including work in crisis situations, seminars, interdisciplinary clinical group sessions, formal pastoral counseling, urban ministry assignments, and participation in group therapy. (Both semesters must be completed.)

761. Seminar in Eastern Religion. (3) Directed study in selected areas of the religious traditions of the East.

762. The Literature of Ancient Judaism. (3) An examination of the rabbinic writings (Mishnah, Tosefta, Talmud, Midrashim, Targumim, and the Liturgy), the Dead Sea Scrolls, the Old Testament Apocrypha and Pseudepigrapha, and the literature of Hellenistic Judaism (e.g., Philo and Josephus).
763. Hellenistic Religions. (3) Consideration of available source materials, questions of method, and bibliography related to such Hellenistic religions as the Mysteries, Hellenistic Judaism, and Gnosticism.

766. Seminar in Christian History. (3) Directed study of selected areas in the history of Christianity, including Baptist history.

768. The Protestant and Catholic Reformation. (3) A study of the origin and development of Reformation theology and ecclesiology.

775. Seminar in the History of Christian Thought. (3) An intensive study of a selected period or movement in Christian theological history, with special reference to seminal persons and writings.

780. Seminar in Theology and Literature. (3) An intensive study of a single theologian in relation to a literary figure with a similar religious outlook, the aim being to investigate how literature and theology mutually invigorate and call each other into question. Representative pairings: Niebuhr/Auden, Barth/O’Connor, Tillich/Updike, Newman/Eliot, Kierkegaard/Percy. May be repeated for credit if the writers studied are different.

791, 792. Thesis Research. (1-9)

Courses in General Studies
Bowman Gray Campus

Graduate

700, 701. Introduction to Professional Development in the Biomedical Sciences. (1) This course is intended to accomplish four specific aims: (1) To provide an introduction to the responsible conduct of research. (2) To introduce students to key aspects of professional development, such as grant writing, effective oral presentations, professional networking, career planning and advancement, and manuscript preparation (3) To provide insights into other biomedical science research activities through discussions of animal care and use in scientific research, human research, intellectual property, the pharmaceutical industry, and start-up companies (4) To establish a weekly opportunity to interact with other students to share academic experiences and develop personal and professional relationships outside the home academic department. Godwin

702, 703. Internship. (1-9) Internships are available for a student who has completed one year of graduate study and desires experience working in the private sector or a nonprofit or government agency. Internships typically take place during the summer months and last for three months, although the timing and duration may be adjusted to satisfy each student’s needs and the type of internship available. Credit hours are adjusted based on the length of the internship. The student receives a written evaluation from the host organization mentor and is required to submit a written report of his/her work. The course may be repeated.

705. Problem Based Learning (PBL). (1-3) Small group sessions with post-baccalaureate premedical program students to facilitate the development of clinical reasoning skills and basic and clinical science knowledge. Topics on ethics and professionalism and the doctor-patient
relationship are discussed. A combination of case studies, reading assignments, course notes and group discussion will be used. Staff

710. Bioethics for Biomedical Researchers. (3) Bioethics historically has been the study of ethics in medicine. Recently, bioethics has begun tackling biomedical research issues. This course stresses biomedical research issues, providing students with tools to dissect and analyze biomedical research ethical cases. The course includes an overview of ethical systems applicable for medical ethics and medical research. Technical, philosophical, theological, legal and social implications are examined in-depth on a few topics. Possible topics include principles of human research, using human embryos as research tools, human cloning, transgenic animals, implications of the human genetics era, germ-line genetic engineering of humans, cybernetics, artificial intelligence, and patenting of life forms. The course uses literature and popularized images of biomedical research to examine the underlying concepts and societal impact of what it means to be human, personhood, species-ism, alive or dead, immortality, the fountain of youth, and the post human era. Staff

712. Teaching Skills and Strategies Seminar. (2) This course is designed to provide students with formal training and development in teaching strategies and teaching scholarship. A variety of theories and pedagogies are reviewed and discussed. Students receive some practical experience in developing and delivering instructional materials and assessment tools. The seminar meets weekly for two hours throughout the spring semester. Lambros

Courses in General Studies

Reynolda Campus

As a mechanism for enrichment of graduate studies at Wake Forest University, additional courses in liberal arts are offered for graduate credit. These courses are designed to provide special opportunities for students in the humanities and social sciences, but are open to students on either campus. The courses may be taken after consultation with the student’s departmental advisory committee.

Anthropology

605. Museum Anthropology. (3) Examines the historical, social, and ideological forces shaping the development of museums. Emphasizes the history of anthropology, the formation of anthropological collections, representation, and the intellectual and social challenges facing museums today.

607. Collections Management Practicum. (1.5) The principles of collections management including artifact registration, cataloging, storage, and handling; conservation issues and practices; disaster planning and preparedness; and ethical issues will be covered through lectures, readings, workshops, and hands-on use of the Museum’s collections.

613. Tradition, Continuity, and Struggle: Mexico and Central America. (3) Acquaints students with the lives and struggles of indigenous and non-indigenous people of Mexico and neighboring countries, with special focus on the Maya. The class includes study of contemporary and prehispanic traditions, including Mayan cosmology, language, art and architecture, issues of contact during Spanish colonization, and current political, economic, health, and social issues affecting these areas today.
615. Artifact Analysis and Laboratory Methods in Archeology. (3) An introduction to methods for determining the composition, age, manufacture, and use of different prehistoric and historic artifact types. Techniques for reconstruction of past natural environments from geological or ecofact samples. Exploration of data display tools including computer-based illustration, GIS, and archeological photography.

630. Seeing World Cultures. (3) Focuses on selected cultures throughout the world to better understand these societies through the use of ethnographic literature and assesses the effectiveness of visual communication in conveying ideas about these cultures through the use of ethnographic videos and films.

632. Anthropology of Gender. (3) Focuses on the difference between sex, a biological category, and gender, its cultural counterpart. An anthropological perspective is used to understand both the human life cycle and the status of contemporary women and men worldwide. In section one, topics covered include evolution and biological development, sexuality and reproduction, parenting and life cycle changes. The second section includes a cross-cultural comparison examining roles, responsibilities and expectations, and how these interact with related issues of class and race in diverse locations, including Africa, South Dakota, China, India and the Amazon.

634. Peoples and Cultures of South Asia. (3) A survey of the peoples and cultures of the Indian subcontinent in the countries of Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka. The course reviews major topics of interest to anthropologists, including prehistory, history and politics, religion, social organization, caste, gender, development and population.

637. Economic Anthropology. (3) Examines the relationship between culture and the economy and its implications for applied anthropology. The variable nature and meaning of economic behavior will be examined in societies ranging from non-industrial to post-industrial. Discusses the impact of economic development programs, foreign aid and investment, technology transfer, and a variety of other economic aid programs.

639. Culture and Nature. (3) Exploration of humanity’s “place” in the cosmos, focusing on different worldviews of nature and culture. Case studies from anthropology, archeology, and environmental science examine conceptions of technology, resources, environment, and ownership in the context of environmental change, “natural” disasters, and resource scarcity.

640. Anthropological Theory. (3) A study and evaluation of the major anthropological theories of humans and society. The relevance and significance of these theories to modern anthropology are discussed.

642. Applied Anthropology. (3) Seminar exploring the ways anthropological concepts and data contribute to understanding and solving contemporary problems facing human populations everywhere. Emphasis will be on change and conflict situations in developing areas, but problems encountered by urban and industrialized cultures also are considered.

653/654. Field Research. (3,3) Issues based field program providing students with a critical understanding of the historical, social, political-economic and environmental conditions that have shaped the lives of the people of the Greater Southwest, with special attention to the Native American and Latino/a experience. The program moves from the Mexican border region through New Mexico and Arizona, focusing on border issues, archaeology and prehispanic
history, and contemporary Native American culture. Students camp, hike, and learn to use digital technology in the field. Specific sites may vary from year to year.

655. Language and Culture. (3) Covers theoretical and methodological approaches to the study of language and culture, including: semiotics, structuralism, ethnoscience, the ethnography of communication, and sociolinguistics. Topics include: linguistic relativity; grammar and worldview; lexicon and thought; language use and social inequality; language and gender; and other areas.

662. Medical Anthropology. (3) The impact of Western medical practices and theory on non-Western cultures and anthropological contributions to the solution of world health problems.

663. Primate Behavior and Biology. (3) Examines the evolution and adaptations of the order primates. Considers the different ways that ecology and evolution shape social behavior. A special emphasis on the lifeways of monkeys and apes.

664. Primate Evolutionary Biology. (3) Examines the anatomy, evolution, and paleobiology of members of the order Primates. Emphasis is placed on the fossil evidence for primate evolution. Major topics covered include: primate origins, prosimian and anthropoid adaptations, patterns in primate evolution, and the place of humans within the order Primates.

665. Evolutionary Medicine. (3) An explicitly evolutionary approach to complex relationships between human evolutionary adaptations and health problems related to modern behavior and culture.

666. Human Evolution. (3) The paleontological evidence for early human evolution, with an emphasis on the first five million years of bio-cultural evolution.

668. Human Osteology. (3) A survey of human skeletal anatomy and analysis, emphasizing archeological and anthropological applications.

670. Old World Prehistory. (3) Survey of Old World prehistory, with particular attention to geological and climatological events affecting culture change.

674. Prehistory of North America. (3) The development of culture in North America as outlined by archeological research, with an emphasis on paleoecology and sociocultural processes.

676. Archeology of the Southeastern United States. (1.5) A study of human adaptation in the Southeast from Pleistocene to the present, emphasizing the role of ecological factors in determining the formal aspects of culture.

677. Ancestors, Indians, Immigrants: A Southwest Cultural Tapestry. (3) Exploration of factors that shaped the lives of people in the Southwest, with attention to Native American and Hispanic experience. From kivas to casinos, coyotes to cartels, links archeological and prehispanic history to contemporary lifeways in the canyons, deserts, and cities of the U.S./North Mexico.

678. Conservation Archeology. (1.5) A study of the laws, regulations, policies, programs, and political processes used to conserve prehistoric and historic cultural resources.

681, 682. Archeological Research. (3, 3) The recovery of anthropological data through the use of archeological fieldwork. Students learn archeological survey, mapping, excavation, recording techniques and artifact and ecofact recovery and analysis.

683, 684. Field Research in Cultural Anthropology. (3, 3) Training in techniques for the study of foreign cultures, carried out in the field.

685, 686. Special Problems Seminar. (3, 3) Intensive investigation of current scientific research within the discipline, concentrating on problems of contemporary interest.

687. Ethnographic Research Methods. (3) Designed to familiarize students with ethnographic research methods and their application. Considers the epistemological, ethical, political, and psychological aspects of research. Laboratory experience and data analysis.

Art

696. Art History Seminar. (3) Offered by members of the faculty or visiting faculty on topics of their choice.

```
a. Ancient Art                      h. Modern Architecture
b. Medieval Art                    i. American Architecture
c. Renaissance Art                j. Art and Popular Culture
d. Baroque Art                     k. Film
e. Modern Art                      l. Architecture and Urbanism
f. Contemporary Art               m. Museums
g. American Art                    n. Special Topics
```

Classical Languages

698, 699. The Teaching of Latin. (3, 3) A reading course and workshop in the problems of Latin pedagogy and the secondary Latin curriculum, designed to meet the needs and interest of selected students. P—POI.

History

606. The Early Middle Ages. (3) European history from the end of the Ancient World to the mid-twelfth century, stressing social and cultural developments. Staff

607. The High Middle Ages Through the Renaissance. (3) European history from the mid-twelfth through the early sixteenth century, stressing social and cultural developments. Staff

608. The World of Alexander the Great. (3) An examination of Alexander the Great’s conquests and the fusion of Greek culture with those of the Near East, Central Asia, and India. Special emphasis placed on the creation of new political institutions and social customs, modes of addressing philosophical and religious issues, as well as the achievements and limitations of Hellenistic Civilization. Lerner

609. Europe: From Renaissance to Revolution. (3) A survey of European history from the fifteenth to the eighteenth century. Topics include the voyages of discovery, the military revolution, the formation of the modern state, religious reformation, witchcraft and the rise of modern science, pre-industrial economic and social structures, including women and the family. Williams

139
610. Seminar. (3) Offered by members of the staff on topics of their choice. A paper is required.
Staff

614. European Economic and Social History, 1700-1990. (3) Changes in Europe’s economic structures and how they affected Europeans’ lives, emphasizing how economic forces interacted with social and institutional factors. Hughes

615. Greek History. (3) The development of ancient Greek civilization from the Bronze Age to the end of the Classical Period stressing social institutions, individual character, and freedom of social choice within the framework of cultural, political, and intellectual history. Lerner

616. Rome: Republic & Empire. (3) A survey of Roman history and civilization from its beginning to about 500 C.E., with emphasis on the conquest of the Mediterranean world, the evolution of the Republican state, the growth of autocracy, the administration of the empire, and the interaction between Romans and non-Romans. Lerner

617. The French Revolution and Napoleonic Empire. (3) The revolution and wars that constitute one of the pivotal points in modern history. Williams

618. Weimar Germany. (3) Art, literature, music, and film of Weimar Germany, 1919-1933, in historical context. German or history credit determined at registration. Hughes

619. Germany to 1871. (3) Social, economic, and political forces leading to the creation of a single German nation-state out of over 1700 sovereign and semi-sovereign German states. Hughes

621. France to 1774. (3) The history of France from the Paleolithic period to the accession of Louis XVI with particular attention to the early modern period. Williams

622. France since 1815. (3) The history of France from the restoration of the monarchy to the Fifth Republic. Williams

623, 624. Great Britain. (3,3) A survey of British history. Topics include religion, revolution and reform, war, poverty and poor relief, women, social and economic change, and empire. 623, to eighteenth century; 624, eighteenth century to present. Staff

628. History of the English Common Law. (3) A study of the origins and development of the English common law and its legacy to modern legal processes and principles. Zick

630. Race, Religion, and Sex in Early Modern Europe. (3) This course explores issues of race, ethnicity, and gender in Europe between 1400 and 1800. Topics include contact and conflict among Jews, Muslims, and Christians; marriage, the family, and sexuality; migration and immigration; and slavery and conquest in early European colonies and empires. Staff

631. Russia: Origins to 1865. (3) A survey of the political, social, and economic history of Russia, from its origins to the period of the Great Reforms, under Alexander II. Rupp

632. Russia and the Soviet Union: 1865 to the Present. (3) A survey of patterns of socioeconomic change from the late imperial period to the present, the emergence of the revolutionary movement, and the development of Soviet rule from its establishment to its collapse.

633. European Diplomacy, 1848-1914. (3) The diplomacy of the great powers, with some attention given to the role of publicity in international affairs. Topics include the unification of Italy and of Germany, the Bismarckian system, and the coming of World War I. Staff
637. Gender in Early America. (3) The history of gender roles from the colonial period to the mid-nineteenth century. Examines the social constructions of femininity and masculinity and their political and cultural significance. Gillespie

638. Gender in Modern America. (3) The history of gender relations from the late nineteenth century to the present. Analyzes the varying definitions of femininity and masculinity, the changing notions of sexuality, and the continuity and diversity of gender roles, with special attention to race, class, and ethnicity. Caron

639. The History of American Medicine. (3) Analysis of the changing approaches to healing in American history. Examines indigenous systems, the introduction of European methods, the attempts to professionalize in the nineteenth century, the incorporation of modern techniques, and the reemergence of natural approaches in the twentieth century. Caron

640. African-American History. (3) The role of African Americans in the development of the United States, with particular attention to African heritage, forced migration, Americanization, and influence. Parent

642. Middle East Before 1500. (4) A survey of Middle Eastern history from the rise of Islam to the emergence of the last great Muslim unitary states. The course provides an overview of political history with more in-depth emphasis on the development of Islamic culture and society in the pre-modern era. Villagomez

643. Imperial China. (3) A study of traditional China to 1850, with emphasis on social, cultural, and political institutions. Sinclair

644. Modern China. (3) A study of China from 1644 to present. Sinclair

645. Middle East Since 1500. (4) A survey of modern Middle Eastern history from the collapse of the last great Muslim unitary states to the present day. Topics include the rise and demise of the Ottoman and Safvid empires, socio-political reform, the impact of colonialism, Islamic reform, the development of nationalism, and contemporary social and economic challenges. Villagomez

646. Japan before 1800. (3) A survey of Japan from earliest times to the coming of Western imperialism, with emphasis on regional ecologies, economic institutions, cultural practice, military organization, political ideology, and foreign relations. Staff

647. Japan since World War II. (3) A survey of Japanese history since the outbreak of the Pacific War, with emphasis on social and cultural developments. Topics may include occupation and recovery of independence, the “1955 System,” high-growth economics, and the problems of prosperity in recent years. Staff

648. Japan since 1800. (3) A survey of Japan in the modern world. Topics include political and cultural revolution, state and empire-building, economic “miracles,” social transformations, military conflicts, and intellectual dilemmas. Staff

650. Global Economic History. (3) An overview of the growth and development of the world economy from precapitalist organizations to the present system of developed and underdeveloped states. Watts

651. United States Social History I. (3) Examines various aspects of American social history from the colonial period to the mid-nineteenth century with emphasis on immigration, ethnicity, race, gender, sexuality, the family, religion, and life and culture. Gillespie
652. United States Social History II. (3) Examines various aspects of American social history from the late nineteenth century to the present with emphasis on immigration, ethnicity, race, gender, sexuality, the family, religion, and life and culture. Caron

653. Colonial English America, 1582-1774. (3) Determinative episodes, figures, allegiances, apperceptions, and results of the period, organically considered. Staff

654. Revolutionary and Early National America, 1763-1820. (3) The American Revolution, its causes and effects, the Confederation, the Constitution, and the new nation. Hendricks

657. The Civil War and Reconstruction. (3) The political and military events of the war and the economic, social, and political readjustments which followed. Escott

658. The United States from Reconstruction to World War I. (3) National progress and problems during an era of rapid industrialization. Watts

659. The United States from World War I through World War II. (3) The transition of America from World War I to 1945, with special emphasis on the New Deal and World War II. Smith

660. The United States since World War II. (3) Trends and changes in the nation from World War II to the present. Smith

661. Economic History of the United States. (3) The economic development of the United States from colonial beginnings to the present. Watts

662. American Constitutional History. (3) Origins of the Constitution, the controversies involving the nature of the Union, and constitutional readjustments to meet the new American industrialism. Zick

663. The Old South. (3) An examination of the origins of southern distinctiveness, from the first interactions of Europeans, Native Americans, and Africans to the Civil War and Emancipation. Gillespie

664. The New South. (3) An examination of sharecropping, segregation, political reform, the Sunbelt phenomenon, the Civil Rights Movement, and southern religion, music, and literature. Includes a service learning component. Gillespie

666. Studies in Historic Preservation. (3) An analysis of history museums and agencies and the techniques of preserving and interpreting history through artifacts, restorations, and reconstructions. P—POI. Hendricks

669. Modern Military History. (3) Making war in the modern era, with special attention to the social context of military activity. Hughes

670. Topics in North Carolina History. (3) A general chronological survey of North Carolina with emphasis on selected topics. Lectures, readings, and class reports. Hendricks

671. Winston-Salem/Forsyth County. (3) A history of the Winston-Salem/Forsyth County area utilizing the techniques of local history, including local archives, museums, and oral history projects. Lectures, readings, and class projects. Hendricks

672. Introduction to African History. (3) An introduction to African history from the perspective of the continent as a whole. The historical unity of the African continent and its relation to other continents will be stressed. Wilson
673. **History of Mexico.** (3) An examination of the history of Mexico from the colonial period to the present. *Meyers*

674. **Protest and Rebellion in Latin America.** (3) A study of the history of protest movements and rebellions in Latin America from primitive and agrarian revolts to mass working class and socialist organizations. *Meyers*

675. **Modern Latin America.** (3) A survey of Latin-American history since Independence, with emphasis on the twentieth century. The course concentrates chiefly on economics, politics, and race. *Meyers*

676. **Civil Rights and Black Consciousness Movements.** (3) A social and religious history of the African-American struggle for citizenship rights and freedom from World War II to the present. *Parent*

677. **American Diplomatic History.** (3) An introduction to the history of American diplomacy since 1776, emphasizing the effects of public opinion on fundamental policies. *Sinclair*

678. **Reconciling Race.** (3) Comparative history of twentieth-century racial oppression, black rebellion, and religious reconciliation. Also listed as Religion 648. *Parent*

680. **America at Work.** (3) This course examines the people who built America from 1750 to 1945. Themes include free labor versus slave labor, the impact of industrialization, the racial and gendered realities of work, and the growth of organized labor and its political repercussions. *Staff*

681, 682. **Preservation Practicum I, II.** (3, 3) Training in the techniques and skills of historic preservation. Emphasis will vary according to the specific site(s) involved. P—POI. *Hendricks*

683. **Revolution and Culture in Latin America.** (3) This course explores the links between revolutionary movements and cultural expression in Latin America and the Caribbean. The course includes a Language Across the Curriculum component, which allows students to earn credits in Spanish by reading and discussing at least half of the texts in Spanish. *Meyers*

684. **Latin America’s Colonial Past.** (3) Studies the history of Latin America’s colonial past from the pre-conquest background to the wars of independence in the early nineteenth century. The course includes a Language Across the Curriculum component, which allows students to earn credits in Spanish by reading and discussing at least half of the texts in Spanish. *Meyers*

685. **Introduction to East Asia.** (3) An introduction to the histories and cultures of East Asia from the earliest times to the present, focusing on China, Korea, Japan, and Vietnam, with some attention to the rest of South-East Asia, and emphasizing ecology and economy, trade and international relations, political ideology, religious belief, and cultural practice. *Staff*

686. **Japan.** (3) A survey of Japanese history from the earliest times to the present. Topics include the origins of “Japan,” ecology and environment, economic institutions and growth, state formation and international relations, social transformations, and cultural and religious practice. *Staff*

693. **American Foundations I.** (3) Interdisciplinary study of American art, history, literature, and music. Using its collection of American art as the basis for study, Reynolda House Museum of American Art, in cooperation with Wake Forest University, accepts a limited number of students to study with professors from various disciplines through lectures, discussions, and concerts. Includes a study tour to New York City. (Taught in summer; students enroll for both courses. Students may enroll in either 693-694 or 763-764.) *Staff*
694. American Foundations II. (3) A continuation of History 693. Staff

698. Individual Study. (3) A project in an area of study not otherwise available in the department; permitted upon departmental approval of petition presented by a qualified student. Staff

699. Directed Reading. (1-3) Concentrated reading in an area of study not otherwise available. P—POI. Staff

763. American Foundations I. (3) Interdisciplinary study of American art, history, literature, and music. Using its collection of American art as the basis for study, Reynolda House Museum of American Art, in cooperation with Wake Forest University, accepts a limited number of students to study with professors from various disciplines through lectures, discussions, and concerts. Includes a study tour to New York City. (Taught in summer; students enroll for both courses. Students may enroll in either 763-764 or 693-694.) Staff

764. American Foundations II. (3) A continuation of History 763. Staff

765. Management of Cultural Organizations. (3) The structure and management of not-for-profit institutions, with emphasis on museums, historical societies and preservation organizations, libraries, archives, and research institutions. Staff

771. Internship. (1, 2, 3) A project involving supervised work in a historical organization or scholarly effort; permitted only upon approval by the graduate committee of a petition presented by a qualified student. Staff

791, 792. Thesis Research. (1-9) Staff

798. Individual Study. (3) A project in an area of study not otherwise available in the department; permitted upon approval by the graduate committee of a petition presented by a qualified student. Staff

Humanities

620. Perspectives on the Middle Ages. (3) A team-taught interdisciplinary course using a variety of literary, historical, and theoretical materials to examine one of the following: a) medieval women; b) medieval constructs of gender, race, and class; c) love and war in the middle ages; d) the medieval environment: landscape and culture. May be repeated for credit with different sub-topics. Sigal, Overing

657. Images of Aging in the Humanities. (3) A multidisciplinary presentation and discussion of portrayals of aging in selected materials from several of the liberal arts: philosophical and religious perspectives; selections from literature and the visual arts; historical development of perceptions of aging; imaging of aging and contemporary culture. Longino

661. Dante I. (1.5) A study of the Divine Comedy as epic, prophecy, autobiography, and poetic innovation, relating it to antiquity, Christianity, Dante’s European present (the birth of the modern languages and new intellectual and poetic forms), and Dante’s own afterlife in the West. Mandelbaum

662. Dante II. (1.5) The completion of the course on the Divine Comedy as epic, prophecy, autobiography, and poetic innovation, relating it to antiquity, Christianity, Dante’s European present (the birth of the modern languages and new intellectual and poetic forms), and Dante’s own afterlife in the West. P—Humanities 661 or POI. Mandelbaum

683. Italian Fascism in Novels and Films. (3) An exploration of theories of fascism, with an emphasis on Italy between 1919 and 1944 as understood through novels and films. Vitti
685. Legends of Troy. (3) An interdisciplinary investigation of translations and transformations of the Trojan Legend from the Greeks through the Middle Ages and the Renaissance to the present. Texts, studied in English translation, are by such authors as Homer, Virgil, Ovid, Chaucer, Racine, and Girandoux. (The course will mix upper-level undergraduates with graduate students. Graduate students will write a longer and more ambitious paper.) Kem

690. Interdisciplinary Seminar on Aging. (3) A study of aging in an interdisciplinary context, including the biological, psychological, neurobiological, cognitive, health status, and social structural and demographic aspects of aging. (The course will mix upper-level undergraduates with graduate students. Graduate students will write a longer and more ambitious paper.) Longino

Philosophy

631. Plato. (3) A detailed analysis of selected dialogues, covering Plato’s most important contributions to moral and political philosophy, theory of knowledge, metaphysics, and theology. P—POI.

632. Aristotle. (3) A study of the major texts, with emphasis on metaphysics, ethics, and theory of knowledge. P—POI.

641. Kant. (3) A detailed study of selected works covering Kant’s most important contributions to theory of knowledge, metaphysics, ethics, religion, and aesthetics. P—POI.

642. Studies in Modern Philosophy. (3) Treatment of selected figures and/or themes in seventeenth and eighteenth century European philosophy. P—POI.

651. Early German Idealism. (3) An examination of the development of post-Kantian idealism through the works of Fichte, Schelling, and Schleiermacher, with particular emphasis on their efforts to address the challenge of critical philosophy. P—POI.

652. Hegel, Kierkegaard, and Nietzsche. (3) An examination of selected sources embodying the basic concepts of Hegel, Kierkegaard, and Nietzsche, especially as they relate to each other in terms of influence, development, and opposition. P—POI.

653. Heidegger. (3) An examination of the structure and development of Heidegger’s philosophy from the ontological analysis in Being and Time to his later work in the philosophy of language and poetry. P—POI.

654. Wittgenstein. (3) The work of Ludwig Wittgenstein on several central philosophical problems studied and compared with that of Frege, James, and Russell. Topics include the picture theory of meaning, truth, skepticism, private languages, thinking, feeling, the mystical, and the ethical. P—POI.

661. Topics in Ethics. (3) P—POI.

662. Social and Political Philosophy. (3) A systematic examination of selected social and political philosophers of different traditions, with concentration on Plato, Marx, Rawls, and Nozick. Topics include rights, justice, equality, private property, the state, the common good, and the relation of individuals to society. P—POI.

671. Philosophy of Art. (3) A critical examination of several philosophies of art, with emphasis upon the application of these theories to particular works of art. P—POI.
672. Philosophy of Religion. (3) An analysis of the logic of religious language and belief, including an examination of religious experience, mysticism, revelation, and arguments for the nature and existence of God. P—POI.

673. Philosophy of Science. (3) A systematic and critical examination of major views concerning the methods of scientific inquiry, and the bases, goals, and implication of the scientific conclusions which result from such inquiry. P—POI.

674. Philosophy of Mind. (3) A selection from the following topics: the mind-body problem; personal identity; the unity of consciousness; minds and machines; the nature of experience; action, intention, and the will. Readings from classical and contemporary sources. P—POI.

675. Philosophy of Language. (3) A study of such philosophical issues about language as truth and meaning, reference and description, proper names, indexicals, modality, tense, the semantic paradoxes, and the differences between languages and other sorts of sign-systems. P—POI.

681. Topics in Epistemology. (3) The sources, scope, and structure of human knowledge. Topics include: skepticism; perception, memory and reason; the definition of knowledge; the nature of justification; theories of truth. P—POI.

682. Topics in Metaphysics. (3) P—POI.

685. Seminar. (2-3) Offered by members of the faculty on specialized topics of their choice. With permission, may be repeated for credit. P—POI.

Political Science

Undergraduate students are given preference in enrollment for courses in the Department of Political Science.

611. Political Parties, Voters, and Elections. (3) An examination of party competition, party organizations, the electorate and electoral activities of parties, and the responsibilities of parties for governing.

617. Politics and the Mass Media. (3) Exploration of the relationship between the political system and the mass media. Two broad concerns are the regulation of the mass media and the impact of media on political processes and events.

618. Congress and Policymaking. (3) An examination of the composition, authority structures, external influences, and procedures of Congress with emphasis on their implications for policy-making in the United States.

620. The American Presidency. (3) Emphasis on the office and the role; contributions by contemporary presidents considered in perspective.

629. Women and Politics. (3) The course examines classical and contemporary arguments regarding the participation of women in politics as well as current policy issues and changes in women’s political participation.

631. Western European Politics. (3) Comparative analysis of political institutions, processes, and policy issues in selected West European countries. Special attention will be given to case studies involving Great Britain, France, Germany, Italy, and to the process of European integration.

632. Politics in Russia and Eastern Europe. (3) Analysis of the political, economic, and social patterns of the region emphasizing the internal dynamics of the political and economic transition processes currently underway.
Government and Politics in Latin America. (3) Comparative analysis of the institutions and processes of politics in the Latin American region.

Islam and Politics. (3) The course explores the interrelationship of Islam and politics in the contemporary world. The course has two main foci. The first deals with Islam as a political ideology which shapes the structure of political institutions and behavior. The second looks at Islam in practice by examining the interaction between Islam and the political systems of Iran, Pakistan, Saudi Arabia, and others.

International Political Economy. (3) Analyzes major issues in the global political economy including theoretical approaches to understanding the tension between politics and economics, monetary and trade policy, North-South relations, environmentalism, human rights, and democratization.

U.S. Foreign Policy: Contemporary Issues. (3) An examination of the most pressing issues in United States foreign policy today, with attention to the historical and institutional context in which U.S. foreign policy is determined.

The Arab-Israeli Conflict. (3) An analysis of factors influencing the relationship between Israel and its neighbors relative to fundamental aspects of United States, Israeli, Palestinian, and Arab states policies.

Marx, Marxism and the Aftermath of Marxism. (3) An examination of Marx’s indebtedness to Hegel, his early humanistic writings, and the vicissitudes of twentieth century vulgar Marxism and neo-Marxism in the works of Lenin, Lukacs, Korsch, Horkeimer, Marcuse, and Sartre.

Romance Languages

French

Advanced Grammar and Stylistics. (3) Review and application of grammatical structures for the refinement of writing techniques. Emphasis placed on the use of French in a variety of discourse types. Attention given to accuracy and fluency of usage in the written language.

Introduction to Business French. (3) An introduction to the use of French in business. This course emphasizes oral and written practices, reading, and French business culture, as well as a comprehensive analysis of different business topics and areas.

Cinema and Society. (3) A study of French and Francophone cultures through cinema. Readings and films may include film as artifact, film theory, and film history.

Trends in French Poetry. (3) A study of the development of the poetic genre with analysis and interpretation of works from each period.

French Prose Fiction. (3) A broad survey of French prose fiction, with critical study of several masterpieces in the field.
665. French Drama. (3) A study of the chief trends in French dramatic art, with reading and discussion of representative plays from selected periods: Baroque, Classicism, and Romanticism, among others.

670. Seminar in French Studies. (3) In-depth study of particular aspects of selected literary and cultural works from different genres and/or periods. Topics vary from semester to semester. Can be repeated for credit.

675. Special Topics. (3) Selected themes and approaches to French literature transcending boundaries of time and genre. Topics to be chosen by staff in consultation with majors prior to the term the course is offered. May be repeated once for credit.

681. Individual Study. (1.5, 3) P—Permission of the department.

Spanish

619. Advanced Conversation. (3) Advanced-level review of Spanish morphology and syntax applied to the refinement of writing techniques.

621. The Rise of Spanish. (3) The development of Spanish from an early Romance dialect to a world language. Study of ongoing changes in the language’s sounds, grammar, and vocabulary system, with a special focus on the effects of cultural history and relationships with other languages.

622. Spanish Pronunciation and Dialect Variation. (3) Description of, and practice with, the sounds, rhythm, and intonation of Spanish and the differences from English, with special attention to social and regional diversity. Strongly recommended for improving pronunciation. This course meets a N.C. requirement for teacher certification.

629. Introduction to Spanish for Business. (3) Introduction to Spanish vocabulary and discourse in business. This course emphasizes oral and written practices, reading, and Hispanic business culture as well as a comprehensive analysis of different business topics and areas.

631. Medieval Spain: A Cultural and Literary Perspective. (3) An examination of the literary, social and cultural themes, such as: Quests and Discoveries, Pilgrimage and the Act of Reading, Images of Islam, The Judaic Tradition in Spanish Literature, and Spiritual Life and Ideal.

632. The Golden Age of Spain. (3) Close analysis of literary texts, such as Lazarillo de Tormes, and study of the history of art, politics, and economics of the sixteenth and seventeenth centuries, with emphasis on themes such as the writer and society, humanism, the picaresque, Catholic mysticism, and power and politics.

633. Eighteenth and Nineteenth Century Spanish Literature and Culture. (3) A study of the major intellectual movements of the period: Enlightenment, Romanticism, Realism, and Naturalism in Spain through literary texts, essays, paintings, and music.

641. Golden Age Drama and Society. (3) Study of the theatre and social milieu of seventeenth-century Madrid, where the works of playwrights such as Lope de Vega, Tirso de Molina, and Calderón de la Barca were performed. Includes analysis of texts and of modern stagings of the plays.

643. Cervantes: The Birth of the Novel. (3) A study of Don Quijote, the first modern novel, and several exemplary novels, and contemporary theoretical approaches to them. Also considers related art, music, and film. Includes discussion of themes such as the development of prose fiction, the novel as a self-conscious genre, women and society, religion and humanism, nationalism, and imperialism.
648. **Transatlantic Renaissance.** (3) A study of the Spanish Golden Age period by reading and analyzing relevant peninsular and Colonial texts within the broader political, social and cultural contexts of the Spanish presence in the New World. Exposure to recent critical perspectives in early modern cultural studies.

649. **Contemporary Women Novelists and their Female Characters.** (3) A study of representative novels by women writers from Spain and Latin America, with special emphasis on the representation of the female protagonist within her cultural context.

650. **Transgressing Borders: Identity in the Literature of Latin American and U.S. Latino Cultures.** (3) A socio-historical study of theories on culture, sexual politics, and race in relation to literary texts, lyrics of popular music, and art of Latin America and the diaspora.

651. **Love, Death, and Poetry.** (3) A study of the representation of universal themes in Spanish poetry from different historical periods.

652. **Indigenous Myth in Spanish American Literary Art.** (3) A study of Spanish American writers’ incorporation of Amerindian myths in twentieth century narrative art. Includes works by Miguel Angel Asturias, Mario Vargas Llosa, and José Donoso.

653. **The Social Canvas of Gabriel García Márquez and Pablo Neruda.** (3) An exploration of the techniques used by two Nobel Prize winning writers to create a literary vision of Latin America. Special attention to humor, surrealism, and the grotesque, and both writers’ assimilation of personal anxieties to their portrayal of a social world.

654. **Cultural and Literary Identity in Latin American: From Colonial to Postcolonial Voices.** (3) A study of a variety of texts from the eighteenth and nineteenth centuries dealing with political emancipation, nation-building, and continental identity.

655. **Latin American Cinema and Ideology.** (3) An examination of major Latin American films as cinematographic expressions of social and political issues.

657. **Contemporary Spanish-American Theater.** (3) A study of the Spanish-American dramatic production from the end of the nineteenth century to the present. The course focuses on some of the main dramatic movements of the twentieth century: realism, absurdism, avant garde, and collective theater.

658. **Spanish-American Short Story.** (3) Intensive study of the twentieth-century Spanish-American short story with emphasis on major trends and representative authors, such as Quiroga, Rulfo, Borges, Cortázar, Donoso, García Márquez.

659. **Spanish-American Novel.** (3) A study of the novel in Spanish America from its beginning through the contemporary period.

660. **Seminar in Spanish-American Novel.** (1.5,3) A study of one or more categories of Spanish-American novels, such as romantic, indianista, realistic, gauchesca, and social protest.

661. **Colonial Spanish America.** (3) This course explores the early American colonial period alongside contemporary intellectuals’ attempt to return to and recover this historical past. Readings include fifteenth- and sixteenth-century codices, post-conquest indigenous writings, Iberian chronicles and letters, as well as twentieth-century documents.

670. Film Adaptations of Literary Works. (3) A study of the cinematic and literary discourses through major Spanish literary works from different historical periods and their film adaptation.

671. Lorca, Dalí, Buñel: An Artistic Exploration. (3) A study of the relationship of these three Spanish artists through their writings, paintings, and films, respectively, and of their impact on the twentieth century.

672. Lorca in the Twentieth Century. (3) A study of the life and works of poet, playwright, painter, and lecturer Federico García Lorca, within the social, cultural, literary, and artistic realities of the twentieth century, including Modernism and Surrealism. Special emphasis is placed on Lorca’s treatment of minority cultures, including the Gypsy, the Arab, and homosexuals.

673. Modern Spanish Novel. (3) A study of representative Spanish novels from the Generation of 1898 through the contemporary period.

674. Voices of Modern Spain. (3) A study of the multifaceted cultural identity of contemporary Spain through different literary genres, art, and film.

675. Special Topics. (1.5, 3) Selected special topics in Spanish literature. P—POI.

680. Contrastive Spanish/English Grammar and Stylistics. (3) Advanced study of structure and style in a variety of Spanish texts, with an in-depth approach to idiomatic expressions and some back/cross translation exercises.

681. Spanish Independent Study. (1.5, 3) P—POI.

682. Spanish/English Interpreting. (1.5, 3) Introduction to strategies of interpreting from Spanish into English, primarily. Intensive laboratory practice course to develop basic skills in consecutive/escort/simultaneous interpreting. Some voice-over talent training is also included.

LIN 683. Language Engineering: Localization and Terminology. (3) Introduction to the process of making a product linguistically and culturally appropriate to the target locale, and to computer-assisted terminology management. Surveys applications in translation technology. Taught in English. P—POI.

684. Internships for Spanish Translation/Localization and Spanish Interpreting. (2-4) Under faculty supervision, a student undertakes a translation/interpreting project at a translation bureau or translation department of a company/public organization. A community service-oriented internship is preferred for interpreting.

687. Special Topics. (1.5, 3) Selected special topics in Spanish-American culture and literature. P—POI.

690. Directed Reading. (1.5) Working with a faculty advisor, the student will complete a special reading project in an area not covered in regular courses. P—POI.

691. Directed Research. (3) Extensive reading and/or research to meet individual needs. Required for departmental honors. P—Permission of department.
Sociology

634. **Society and Higher Education.** (3) An analysis of the social forces that shape educational policies in the U.S. Assessment of significant contemporary writings on the manifest and latent functions of education.

635. **Sociology of Health and Illness.** (3) Analysis of the social variables associated with health and illness.

637. **Aging in Modern Society.** (3) Basic social problems and processes of aging. Social and psychological issues discussed. Course requirements will include field placement in a nursing home or similar institution. P—POI.

643. **Sociology of Law.** (3) Consideration will be given to a variety of special issues: conditions under which laws develop and change, relationships between the legal and political system, the impact of social class and stratification upon the legal order.

Women’s and Gender Studies Program

Undergraduate students are given preference in enrollment for courses in the Women’s and Gender Studies Program.

620. **Issues in Women’s and Gender Studies.** (3) An interdisciplinary course, taught by women’s and gender studies faculty representing at least two fields, that integrates materials from the humanities and the sciences. Topics include critical methods and practical solutions, gender issues in the twenty-first century, women in culture and society, and cross-cultural issues of gender, ethnicity, social class, disability, and sexual orientation.

621. **Interdisciplinary Seminar.** (3) A research-centered study of questions raised by women’s and gender studies on an interdisciplinary topic, such as women’s health issues, international women’s issues, perspectives on women and aging, lesbian and gay culture and theory, and women in the arts.

658. **Mothers and Daughters: Literature and Theory.** (3) A course that examines literature and feminist theories on motherhood and the mother-daughter relationship. Writers to be studied include Toni Morrison, Adrienne Rich, Dorothy Allison, Edwidge Danticat, and Alice Walker. A cross-cultural perspective is taken.

677. **Special Topics.** (3) Includes such women’s studies topics as gender issues in the twenty-first century, Jewish-American women writers, African-American women writers, women and aging, critical approaches to women’s issues, the emergence of feminist thought.

696. **Independent Study.** (1-3) Independent projects in women’s studies, which either continue study begun in regular courses or develop new areas of interest. By prearrangement.
The Board of Trustees

2001-2005

W. Louis Bissette Jr., Asheville, NC
Simpson O. Brown Jr., Winston-Salem, NC
Jan W. Calloway, Greenwich, CT
Harvey R. Holding, Ponte Vedra Beach, FL
Lawrence D. Hopkins, Winston-Salem, NC
James W. Johnston, Winston-Salem, NC
Russell W. Meyer Jr., Wichita, KS
L. Glenn Orr Jr., Winston-Salem, NC
K. Wayne Smith, Newton, NC
Janice Kulynych Story, Atlanta, GA

2002-2006

Jerry H. Baker, Atlanta, GA
Jocelyn Burton, Oakland, CA
Graham W. Denton Jr., Charlotte, NC
Lelia B. Farr, St. Louis, MO
Albert R. Hunt, Washington, DC
Kenneth D. Miller, Greensboro, NC
Barbara B. Millhouse, New York, NY
Lloyd P. Tate Jr., Southern Pines, NC
J. Lanny Wadkins Jr., Dallas, TX
James T. Williams Jr., Greensboro, NC
Kyle Allen Young, Greensboro, NC

2003-2007

Ronald E. Deal, Hickory, NC
Lisbeth C. Evans, Winston-Salem, NC
Martin L. Garcia, Tampa, FL
Marvin D. Gentry, King, NC
James R. Helvey III, Winston-Salem, NC
Alice Kirby Horton, Hillsborough, NC
Jeanette Wallace Hyde, Raleigh, NC
Dee Hughes LeRoy, Charleston, SC
Douglas F. Manchester, La Jolla, CA
Andrew J. Schindler, Winston-Salem, NC
Adelaide A. Sink, Thonotosassa, FL

2004-2008

Diana M. Adams, Bartlesville, OK
Donna A. Boswell, Oakton, VA
Bobby R. Burchfield, McLean, VA
J. Donald Cowan Jr., Raleigh, NC
James A. Dean, Pickerington, OH
Murray C. Greason Jr., Winston-Salem, NC
William B. Greene Jr., Gray, TN
James W. Judson Jr., Roswell, GA
Deborah D. Lambert, Raleigh, NC
William L. Marks, New Orleans, LA
Celeste Mason Pittman, Rocky Mount, NC
Charles Jeffrey Young, Winston-Salem, NC

Life Trustees

Bert L. Bennett, Pfaafftown, NC
Louise Broyhill, Winston-Salem, NC
C. C. Cameron, Charlotte, NC
Charles W. Cheek, Greensboro, NC
Egbert L. Davis Jr., Winston-Salem, NC
Floyd Fletcher, Durham, NC
Victor I. Flow Jr., Winston-Salem, NC
Jean H. Gaskin, Charlotte, NC
Weston P. Hatfield, Winston-Salem, NC
James E. Johnson Jr., Charlotte, NC
Petro Kulynych, Wilkesboro, NC
John G. Medlin Jr., Winston-Salem, NC
Arnold D. Palmer, Youngstown, PA
Frances P. Pugh, Raleigh, NC
Zachary Smith, Winston-Salem, NC
D. E. Ward Jr., Lumberton, NC
Lonnie B. Williams Sr., Wilmington, NC
J. Tylee Wilson, Ponte Vedra Beach, FL
T. Eugene Worrell, Charlottesville, VA
Officers - 2004-2005

Murray C. Greason Jr., Winston-Salem, NC, Chair
L. Glen Orr Jr., Winston-Salem, NC, Vice Chair
Louis R. Morrell, Winston-Salem, NC, Treasurer
J. Reid Morgan, Winston-Salem, NC, Secretary
Nancy S. Moore, Winston-Salem, NC, Assistant Secretary
Arthur N. Pittman, Winston-Salem, NC, Assistant Secretary

The Board of Visitors

John Wagster, Chair, Board of Visitors

Wake Forest College and Graduate School

Terms Expiring June 30, 2005

James C. Daniel, Washington, DC
Steven J. Eskind, Nashville, TN
Laurie G. Eskind, Nashville, TN
Robert M. Frehse Jr., New York, NY
Olivia B. Holding, Atlantic Beach, NC
Beverly B. Lambert, Roanoke, VA
William W. Webb, Chapel Hill, NC

Terms Expiring June 30, 2006

Peter J. Bondy, Ft. Lauderdale, FL
Jane F. Crosthwaite, South Hadley, MA
Patricia Vecellio Cunningham, Natural Bridge, VA
George Lee Hundley Jr., Wynnewood, PA
Mark W. Leuchtenberger, Cambridge, MA
Marcus Cole Miller, Chicago, IL
Christoph Nostitz, Clemmons, NC
Ronald C. Parker, Plano, TX
Keith W. Vaughan, Winston-Salem, NC
Douglas C. Waller, Washington, DC

Terms Expiring June 30, 2007

Bruce M. Babcock, Winston-Salem, NC
Brenda E. B. Dunson, Washington, DC
Gloria Graham, Winston-Salem, NC
H. Stephen Hurst, New York, NY
Robert P. Lee, Darien, CT
Debra Lee, Darien, CT
George Whitfield McDowell, Charlotte, NC
James A. Perdue, Salisbury, MD
Zachary Tate, Blowing Rock, NC
William L. Thorkelson, Rosemont, PA
John W. Wagster, Nashville, TN

Terms Expiring June 30, 2008

Debra Bryant, Keswick, VA
John Crowe, Davis, CA
Sarah duPont, Charlottesville, VA
Gail Gregory, Martinsville, VA
Ashley Hairston, Charlottesville, VA
Rhoda Jucket, Charlotte, NC
Page Laughlin, Winston-Salem, NC
Amy Lowden, Greenwich, CT
Jack Lowden, Greenwich, CT
Toby Moffett, Washington, DC
Joe Neal, Seattle, WA
Cathy Thomas, Chapel Hill, NC
Betsy Tuttle-Newhall, Chapel Hill, NC
Joy Vermillion, Winston-Salem, NC
Mary Helen Young, Malibu, CA

Ex-Officio Members

Zachary T. Smith, Lifetime Trustee Liaison, Winston-Salem, NC
Donna Boswell, Trustee Liaison, Washington, DC

153
The Graduate Council

2005-2006

Gordon A. Melson, Dean of the Graduate School, Chair
Cecilia H. Solano, Associate Dean of the Graduate School
Martha Alexander-Miller (2007)
Allyson Bennett (2008)
Christa Colyer (2008)
Will Fleeson (2007)
David John (2008)
Greg Kucera (2008)
Mark Miller (2006)
Pat Nixon (2006)
Mark Payne (2007)
Stephen Robinson (2007)
Peter Santiago (2006)
Brian Tague (2006)
Blythe Ashcraft (GSA)
Megan Rudock (GSA)

Graduate Faculty Representatives to the University Senate

Gregory S. Shelness (2006)
Suzi Torti (2008)
Kathy Kron (2009)
YEARS FOLLOWING NAME INDICATE YEAR OF HIRE/YEAR OF APPOINTMENT TO CURRENT POSITION

University

Nathan O. Hatch (2005, 2005)
AB, Wheaton College;
AM, PhD, Washington University (St. Louis)
President

BA, Birmingham-Southern; BD, Southern Baptist Theo. Seminary; PhD, Vanderbilt
President Emeritus

Richard H. Dean (1986, 1998)
BA, Virginia Military Institute;
MD, Medical College of Virginia
Senior Vice President for Health Affairs and President, Wake Forest University Health Sciences

BA, MA, Wake Forest; PhD, Rutgers
Provost

John P. Anderson (1984, 1984)
BS, MS, PhD, Georgia Tech.;
MBA, Alabama (Birmingham);
MAEd, Wake Forest
Vice President for Finance and Administration

BA, MD, University of Louisville;
MPH, Harvard
Dean, School of Medicine and Senior Vice President, Wake Forest University Health Sciences

Sandra Combs Boyette (1981, 1997)
BA, UNC-Charlotte; MEd, Converse;
MBA, Wake Forest
Vice President for University Advancement

BS, Alabama (Tuscaloosa);
MBA, MPH, Alabama (Birmingham)
Senior Vice President for Health Affairs, Finance and Administration

James Reid Morgan (1979, 2002)
BA, JD, Wake Forest
Vice President and General Counsel

BS, Babson College; MBA, Massachusetts
Vice President for Investments and Treasurer

Kenneth A. Zick (1975, 1989)
BA, Albion; JD, Wayne State;
MLS, Michigan
Vice President for Student Life and Instructional Resources

Graduate School

BS, PhD, Sheffield (England)
Dean of the Graduate School

Cecilia H. Solano (1977, 1999)
BA, Harvard; MA, PhD, Johns Hopkins
Associate Dean of the Graduate School
Wake Forest University Health Sciences and School of Medicine

Richard H. Dean (1986, 1998) President and Chief Executive Officer
BA, Virginia Military Institute;
MD, Medical College of Virginia

William B. Applegate (1999, 2002) Senior Vice President and Dean
BA, MD, University of Louisville;
MPh, Harvard School of Public Health

Douglas L. Edgeston (2000, 2000) Senior Vice President for Finance and Administration,
BS, Alabama (Tuscaloosa);
MBA, MPH, Alabama (Birmingham)

Thomas J. Pulliam (2002, 2002) Vice President for Professional Affairs
BS, Stanford;
MD, Bowman Gray School of Medicine

Patricia L. Adams (1979, 2005) Chief of Professional Services
BA, Duke; MD, Wake Forest

G. Douglas Atkinson (1994, 1994) Vice President for Networks
BS, Drake; MBA, Xavier

Johannes M. Boehme II (1978, 1990) Associate Dean for Academic Computing
BA, Southern College; MBA, Wake Forest;
PhD, Western

J. Kevin Bokeno (1997, 2001) Vice President for Public Relations and Marketing
BA, BS, Heidelberg College;
MS, Michigan State

Edward Carter (1993, 1993) Vice President for Facilities Planning and Construction
BS, Western Michigan;
MS, San Diego State

J. Mac Ernest III (1982, 2005) Associate Dean for Student Services
BA, William Carey College;
MD, Mississippi

BS, Washington National

Michael L. Freeman (1993, 2001) Vice President for Strategic Planning
BS, Bradley;
MBA, University of Iowa

BS, Appalachian State;
MBA, Wake Forest

Peter R. Hoffmann (2001, 2003) Vice President for Clinical Operations
AB, MD, MPhil, Columbia

Ronald L. Hoth (1992, 1992) Vice President for Human Resources
BS, Loyola College

Brenda Latham-Sadler (1990, 2002) Assistant Dean for Student Services,
BS, Pace; MD, Wake Forest

Douglas E. Lischke (1999, 2003) Director of Minority Programs
BA, Georgia Southern; MBA, Valdosta State (Georgia)

Michael P. Lischke (2000, 2001) Director, Northwest AHEC
BA, MPh, Emory; EdD, Temple
Vice President for Information Services
BS, Syracuse; MBA, Florida State

Assistant Dean for Research
BS, Kent State; MBA, Roosevelt

Laurie Molloy (1998, 2004)
Assistant Dean for Resource Management
BS, St. Cloud State (Minnesota); MBA, Wake Forest

Lewis H. Nelson III (1976, 1985)
Associate Dean for Medical Student Admissions
BS, NC State; MD, Wake Forest

K. Patrick Ober (1979, 2002)
Associate Dean for Education
BS, Michigan State; MD, University of Florida College of Medicine

Patricia H. Petrozza (1984, 2001)
Associate Dean for Graduate Medical Education
BS, Chestnut Hill College; MD, Jefferson Medical College, Thomas Jefferson

Joanne Ruhland (1988, 1988)
Associate Vice President for Governmental Relations
BS, Gardner Webb; MBA, Appalachian State

Sally A. Shumaker (1990, 2004)
Associate Dean for Research
BA, Wayne State; MA, PhD, University of Michigan

Interim Vice President for Development and Alumni Affairs
BA, Regis College; MA, Penn State

Rick C. Weavil (1985, 2002)
Associate Vice President for Wake Forest University Physicians Finance
BS, UNC-Chapel Hill

E. Parks Welch III (1991, 2000)
Director, Coy C. Carpenter Library
BS, UNC-Chapel Hill; MBA, Wake Forest; MLS, UNC-Greensboro

College

Deborah L. Best (1972, 2004)
Dean of the College
BA, MA, Wake Forest; PhD, UNC-Chapel Hill

Linda McKinnish Bridges (2001, 2001)
Associate Dean
BA, Meredith College; PhD, MDiv, Southern Baptist Theological Seminary

Associate Dean and Dean of the Summer Sessions
BA, Wake Forest; MDiv, Duke; EdD, Indiana

Associate Dean
BA, MA, PhD, Yale

Paul N. Orser (1989, 1994)
Associate Dean and Dean of Freshmen
BS, Wake Forest; MS, PhD, Emory

Associate Athletic Director and Assistant to the Dean of the College
BA, MA, Wake Forest

Director of Academic Counseling for Student-Athlete Services and Assistant to the Dean of the College
BA, UNC-Greensboro; MA, Wake Forest

157
Wayne Calloway School of Business and Accountancy

Jack E. Wilkerson Jr. (1989, 1997) Dean of the Wayne Calloway School of Business and Accountancy
BS, Bob Jones; PhD, Texas

J. Kline Harrison (1990, 1999) Associate Dean
BS, Virginia; PhD, Maryland

Gordon E. McCray (1994, 2002) Associate Dean
BS, Wake Forest; MBA, Stetson; PhD, Florida State

Helen Akinc (1987, 1999) Assistant Dean for Student Professional Affairs
BA, UNC-Chapel Hill; MBA, SUNY (Binghamton)

Katherine S. Hoppe (1993, 1996) Assistant Dean for Student Academic Affairs
BA, Duke; MBA, Texas Christian; PhD, UNC-Greensboro

Terry A. Baker (1998, 1999) Director of Graduate Studies
BA, Miami of Ohio; MS, MBA, Chicago; PhD, Kentucky

Career Services

William C. Currin (1988, 1988) Director of Career Services
BA, Wake Forest; BD, Southeastern Baptist Theo. Seminary

Carolyn A. Couch (1997, 2000) Associate Director of Career Services
BS, Meredith College; MA, Appalachian State

BA, MBA, Wake Forest

Shan Woolard (2001, 2001) Assistant Director
BA, Salem College; MS, UNC-Greensboro

Information Systems

Jay L. Dominick (1991, 1996) Assistant Vice President for Information Systems and Chief Information Officer
BS, UNC-Chapel Hill; MA, Georgetown; MBA, Wake Forest

Nancy R. Crouch (1992, 2001) Assistant Chief Information Officer
BA, Virginia Tech; MAEd, Wake Forest

BS, University of Richmond; MBA, Wake Forest

Anne Yandell Bishop (1981, 2001) Director of Research and Development
BA, MA, UNC-Greensboro; MBA, Wake Forest

R. Kriss Dinkins (1990, 2003) Director of Support and Outreach Services
BA, Wake Forest

BS, NC State; MBA, Wake Forest

Lynda Goff (1991, 2003) Director of Technology Initiatives
BA, Southern California (Fullerton)

John D. Henderson (1998, 1999) Director of Administration
BBA, Campbell
Danny M. Kemp (2003, 2003)
Director of Software Solutions
BS, MBA, Mississippi State

Director of Information Technology Infrastructure
BA, MA, South Carolina; MBA, Wake Forest

Institutional Research

Ross A. Griffith (1966, 1993)
Director of Institutional Research and Academic Administration
BS, Wake Forest; MEd, UNC-Greensboro

Adam Shick (2001, 2001)
Assistant Director of Institutional Research
BS, US Merchant Marine Academy; MA, Wake Forest

Legal Department

J. Reid Morgan (1979, 2002)
Vice President and General Counsel and Secretary of the Board of Trustees
BA, JD, Wake Forest

Counsel
AB, Drury; JD, Wake Forest

Anita M. Conrad (1999, 1999)
Counsel
BA, University of Akron; JD, Wake Forest

Assistant Counsel
BA, Drake; JD, Wake Forest

Assistant Counsel
BS, MBA, JD, Wake Forest

Libraries

Director of the Z. Smith Reynolds Library
AB, MLS, University of Michigan; PhD Wayne State

Associate Director of the Z. Smith Reynolds Library
BA, Wittenberg; MLS, University of Pittsburgh

Marian F. Parker (1999, 1999)
Director of the Professional Center Library and Professor of Law
BA, UNC-Greensboro; MSLS, UNC-Chapel Hill; JD, Wake Forest

E. Parks Welch III (1991, 2000)
Director of the Coy C. Carpenter Library
BS, UNC-Chapel Hill; MBA, Wake Forest; MLS, UNC-Greensboro

Office of the Chaplain

Chaplain
BA, Wofford College; MDiv, Duke

Rebecca G. Hartzog (1999, 1999)
Associate Chaplain and Baptist Campus Minister
BA, Samford; MDiv, Southern Baptist Theological Seminary

Summer Session

Dean of Summer Sessions and Associate Dean of the College
BA, Wake Forest; MDiv, Duke; EdD, Indiana
The Graduate Faculty

DATE FOLLOWING NAME INDICATES YEAR OF APPOINTMENT TO THE GRADUATE FACULTY.

<table>
<thead>
<tr>
<th>Name</th>
<th>Year</th>
<th>Position</th>
<th>Institution/Program</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jon S. Abramson</td>
<td>1981</td>
<td>Professor of Pediatrics</td>
<td>Associate in Microbiology and Immunology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA, Boston; MD, Wake Forest</td>
</tr>
<tr>
<td>John R. Absher</td>
<td>1994</td>
<td>Adjunct Assistant Professor, Neurology</td>
<td>Adjunct Assistant Professor of Physiology and Pharmacology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, Radford; MD, Virginia Commonwealth</td>
</tr>
<tr>
<td>Michael R. Adams</td>
<td>1980</td>
<td>Professor of Pathology</td>
<td>(Comparative Medicine)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, DVM, Illinois (Champaign-Urbana)</td>
</tr>
<tr>
<td>Azeez A. Aileru</td>
<td>2000</td>
<td>Adjunct Associate Professor of Pharmacology</td>
<td>Adjunct Associate Professor of Pharmacology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, MS, North Carolina Central;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD, Howard University College of Medicine</td>
</tr>
<tr>
<td>Steven A. Akman</td>
<td>1996</td>
<td>Professor of Internal Medicine</td>
<td>Professor of Cancer Biology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AB, Cornell; MD, Albert Einstein College of Medicine</td>
</tr>
<tr>
<td>George Aldhizer</td>
<td>2003</td>
<td>PricewaterhouseCoopers Faculty Fellow and</td>
<td>Associate Professor of Accountancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Associate Professor of Accountancy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BSBA, University of Richmond;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD, Texas Tech</td>
</tr>
<tr>
<td>Rebecca W. Alexander</td>
<td>2001</td>
<td>Assistant Professor of Chemistry</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, University of Delaware;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD, University of Pennsylvania</td>
</tr>
<tr>
<td>Martha Alexander-Miller</td>
<td>1997</td>
<td>Associate Professor of Microbiology and Immunology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, Butler; PhD, Washington</td>
</tr>
<tr>
<td>Edward E. Allen</td>
<td>1991</td>
<td>Professor of Mathematics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, Brigham Young; MA, PhD, California (San Diego)</td>
</tr>
<tr>
<td>Walter Ambrosius</td>
<td>2003</td>
<td>Associate Professor of Public Health Services</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Biostatistics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>AB, AM, Washington;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD, University of Chicago</td>
</tr>
<tr>
<td>David J. Anderson</td>
<td>1992</td>
<td>Professor of Biology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA, Denison; MS, Michigan; PhD, Pennsylvania</td>
</tr>
<tr>
<td>John P. Anderson</td>
<td>1984</td>
<td>Professor of Counseling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, MS, PhD, Georgia Institute of Technology;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MBA, Alabama (Birmingham)</td>
</tr>
<tr>
<td>Paul R. Anderson</td>
<td>1990</td>
<td>Professor of Physics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, Wisconsin (Madison); MA, PhD, California (Santa Barbara)</td>
</tr>
<tr>
<td>Roger T. Anderson</td>
<td>1996</td>
<td>Professor of Public Health Sciences</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA, Michigan State; PhD, Johns Hopkins</td>
</tr>
<tr>
<td>John A. Anstrom</td>
<td>1986</td>
<td>Research Assistant Professor of Neurobiology and Anatomy</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BS, Pennsylvania State; PhD, SUNY (Buffalo)</td>
</tr>
<tr>
<td>Kristin Anstrom</td>
<td>2003</td>
<td>Assistant Professor of Physiology and Pharmacology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BA, Davidson; PhD, Wake Forest</td>
</tr>
</tbody>
</table>
Robert J. Applegate (1987)
BA, California; BS, San Jose State; MD, Virginia
Professor of Internal Medicine (Cardiology)

BA, MD, University of Louisville; PhD, Harvard School of Public Health
Senior Vice President and Dean
Wake Forest University School of Medicine

BA, Duquesne; MA, PhD, University of Kentucky
Professor and Research Director, Family & Community Medicine

Michael Aschner (1994)
BS, MS, PhD, Rochester
Adjunct Professor of Physiology and Pharmacology

Miriam A. Ashley-Ross (1997)
BS, Northern Arizona; PhD, California (Irvine)
Associate Professor of Biology

BA, University of Miami; MD, University of Louisville
Professor of Surgical Sciences (Urology); Director, Institute for Regenerative Medicine; Associate in Physiology and Pharmacology; Associate in Internal Medicine (Molecular Medicine)

David B. Averill (1993)
BS, Kent State; PhD, Washington
Associate Professor Surgery–General

Nancy E. Avis (2001)
BA, University of Wisconsin; MA, University of Illinois at Chicago Circle; PhD, University of Michigan; MSHyg, University of Pittsburgh School of Public Health
Professor of Public Health Sciences (Social Sciences)

Alexey Azarov (2003)
MD, I.M. Sechenov 1st Moscow Medical Institute; PhD, P.K. Anokhin Institute of Normal Physiology, Russian Academy of Medical Sciences
Instructor in Physiology and Pharmacology

Terry Baker (1998)
BA, Miami; MS, University of Illinois; MBA, University of Chicago; PhD, University of Kentucky
PricewaterhouseCoopers Professor for Academic Excellence and Associate Professor of Accountancy (Wayne Calloway School of Business and Accountancy)

David A. Bass (1976)
BA, Yale; MD, Johns Hopkins; PhD, Oxford
Professor of Internal Medicine (Infectious Disease and Pulmonary); Professor of Microbiology and Immunology; Associate in Biochemistry

Ersin Bayram (2004)
BS, Bilkent University (Turkey); MS, PhD, Wake Forest
Instructor in Biomedical Engineering

Robert C. Beck (1959)
BA, PhD, Illinois
Professor of Psychology

S. Douglas Beets (1987)
BS, Tennessee; MAcc, PhD, Virginia Poly. Inst. and SU
Professor of Accounting (Wayne Calloway School of Business and Accountancy)

Ronny A. Bell (1998)
BS, UNC-Chapel Hill; MS, Wake Forest; MEd, PhD, UNC-Greensboro
Associate Professor of Public Health Sciences (Epidemiology); Associate in Family Medicine; Associate in Internal Medicine (Gerontology)

Allyson J. Bennett (2003)
BS, University of Wisconsin (Oshkosh); MS, PhD, University of Memphis
Assistant Professor of Physiology and Pharmacology
Kenneth S. Berenhaut (2001)
BA, MS, University of Manitoba;
MA, PhD, University of Georgia

Isabelle M. Berquin (2002)
BS, Free University of Brussels; PhD, Wayne State

Joel Berry (2004)
BS, MS, Univ. of Alabama at Birmingham;
PhD, Wake Forest University

Michael J. Berry (1985)
BS, Jacksonville State;
MA, Southeastern Louisiana; PhD, Texas A&M

Alain G. Bertoni (2001)
BA, Yale; MD, MPH, Johns Hopkins

Deborah L. Best (1972)
BA, MA, Wake Forest; PhD, UNC-Chapel Hill

Ulrich Bierbach (2000)
MS, PhD, University of Oldenburg

Eugene Bleecker (2003)
BA, New York;
MD, State University of New York

Terry D. Blumenthal (1987)
BSc, Alberta; MS, PhD, Florida

Walter J. Bo (1960)
BS, MS, Marquette; PhD, Cincinnati

Keith D. Bonin (1992)
BS, Loyola (New Orleans); PhD, Maryland (College Park)

Susan Harden Borwick (1982)
BM, BME, Baylor; PhD, UNC-Chapel Hill

Eugueni Boudygine (2003)
PhD, Institute of Pharmacology,
Russian Academy of Medical Sciences

J. Daniel Bourland (1995)
BS, MSPH, PhD, UNC-Chapel Hill

Donald W. Bowden (1989)
BA, Vanderbilt; PhD, California (Berkeley)

Stephen B. Boyd (1986)
BA, Tennessee; MDiv, ThD, Harvard Divinity School

Anne M. Boyle (1997)
BA, Wilkes College; MA, PhD, University of Rochester

K. Bridget Brosnihan (1993)
BS, College of St. Mary;
MS, Creighton; PhD, Case Western Reserve

Bernard A. Brown II (2002)
BA, BS(2), PhD, NC State

Sterge Faculty Fellow
and Assistant Professor of Mathematics

Assistant Professor of Pathology
Associate in Cancer Biology

Research Assistant Professor of Radiological Sciences
(Biomedical Engineering)
Associate in Regenerative Medicine

Professor of Health and Exercise Science

Assistant Professor of Public Health
Sciences (Epidemiology) and
Internal Medicine (General)
Associate in Regenerative Medicine

William L. Poteat Professor of Psychology
Dean of the College

Associate Professor of Chemistry

Professor of Internal Medicine
(Pulmonary/Critical Care)
Professor of Public Health Sciences
Associate in Pediatrics
Professor of Psychology

Professor of Neurobiology and Anatomy

Professor of Physics

Professor of Music

Assistant Professor of Radiation Oncology
Associate in Biomedical Engineering

Professor of Biochemistry
Professor of Internal Medicine (Endocrinology)
Associate of Pediatrics
Easley Professor of Religion

Professor of Religion

Professor of English

Professor of Surgical Sciences (General)
Professor of Physiology and Pharmacology
Associate in OB/GYN

Assistant Professor of Chemistry
Associate in Cancer Biology
Carole L. Browne (1980)
BS, Hartford; PhD, Syracuse
Professor of Biology

Robert A. Browne (1980)
BS, MS, Dayton; PhD, Syracuse
Professor of Biology

Peter H. Brubaker (1991)
BS, East Stroudsburg; MA, Wake Forest; PhD, Temple
Associate Professor of Health and Exercise Science
Director, Cardiac Rehabilitation Program

Judy Karen Brunso-Bechtold (1983)
BS, Duke; MS, PhD, Florida State
Professor of Neurobiology and Anatomy
Associate in Surgical Sciences (Otolaryngology)

Christy M. Buchanan (1992)
BA, Seattle Pacific; PhD, Michigan
Associate Professor of Psychology

Vardaman M. Buckalew Jr. (1973)
BA, UNC-Chapel Hill; MD, Pennsylvania
Professor of Internal Medicine (Nephrology)
Professor of Physiology and Pharmacology
Associate Professor of Diagnostic Radiology
Associate in Biomedical Engineering

Jennifer J. Burg (1993)
BA, Elizabethtown College; MA (French), MA (English), Florida; PhD, Central Florida
Associate Professor of Computer Science

Gregory L. Burke (1991)
BA, Northern Iowa; MS, MD, Iowa
Professor of Public Health Sciences
Professor of Neurology

David W. Busija (1991)
BS, Pittsburgh; MA, PhD, Kansas
Professor of Physiology and Pharmacology
Associate in Regenerative Medicine

Robert P. Byington (1987)
BS, Loyola; MPH, PhD, Texas (School of Public Health)
Professor of Public Health Sciences (Epidemiology)

William S. Caldwell (1994)
BS, University of the South; PhD, Wisconsin
Adjunct Assistant Professor of Physiology and Pharmacology
Adjunct Assistant Professor of Chemistry

Michael F. Callahan (1993)
BA, Southern Mississippi; PhD, University of Health Sciences
Assistant Professor of Physiology and Pharmacology
Associate in Surgery (Orthopedics)
Associate in Regenerative Medicine
Associate Professor of Computer Science

Daniel A. Cañas (1987)
BS, Tecnologico de Monterrey (Mexico); MS, Georgia Tech; PhD, Texas (Austin)
Associate Professor of Computer Science

Eric D. Carlson (1995)
BS, Michigan State; PhD, Harvard
Associate Professor of Physics

Richard D. Carmichael (1971)
BS, Wake Forest; MA, PhD, Duke
Professor of Mathematics

Simone M. Caron (1991)
BA, Bridgewater State; MA, Northeastern; PhD, Clark
Associate Professor of History

David Carroll (2003)
BA, University of Colorado; PhD, UNC-Chapel Hill
Associate Professor of Physics
Associate in Radiological Sciences (Biomedical Engineering)

L. Douglas Case (1986)
BS, MSPH, PhD, UNC-Chapel Hill
Professor of Public Health Sciences (Biostatistics)

Jing Yu Chang (1993)
Bachelor of Medicine, Beijing Medical University (China); PhD, University of Lund (Sweden)
Associate Professor of Physiology and Pharmacology
Mark Chappell (1997)
BA, American;
PhD, Cleveland State

Guoqing John Chen (2001)
MD, Tongji Medical University;
MPH, PhD, UNC-Chapel Hill

Haiying Chen (2005)
BM, MM, Shanghai Medical University (PR China)
MS, PhD, Ohio State University; PhD

Yong Q. Chen (2002)
BS, Fudan University, Shanghai;
PhD, Free University of Brussels

Che-Ping Cheng (1993)
MD, Nanjing Railway Medical University (China); PhD, Wayne State

Steven R. Childers (1990)
BS, Texas (Austin); PhD, Wisconsin (Madison)

Floyd H. Chilton (1998)
BS, Western Carolina; PhD, Wake Forest

George Christ (2004)
BS, Muhlenberg College; PhD, Wake Forest

BA, Vanderbilt; PhD, Duke

Thomas B. Clarkson Jr. (1957)
DVM, Georgia

J. Mark Cline (1993)
BS, DVM, PhD, NC State

Robert C. Coghill (1999)
BS, College of William and Mary;
PhD, Virginia Commonwealth

BSN, MSN, PhD, UNC-Greensboro

John E. Collins (1970)
BS, MS, Tennessee;
MDiv, Southeastern Baptist Theological Seminary; MA, PhD, Princeton

Christa Colyer (1997)
BS, Trent University, Canada;
MS, University of Guelph, Canada;
PhD, Queen’s University, Canada

William E. Conner (1988)
BA, Notre Dame; MS, PhD, Cornell

BS, University of Athens (Greece);
PhD, Johns Hopkins

Gregory Cook (2000)
BS, PhD, UNC-Chapel Hill

Scott D. Cramer (1996)
BA, PhD, California (Santa Cruz)
Sonia Crandall (2004) Associate Professor of Family and Community Medicine
BS, Western Illinois;
MEd, University of Illinois; MS, Wake Forest;
PhD, University of Oklahoma

John R. Crouse III (1980) Professor of Internal Medicine (Endocrinology and Metabolism)
BA, Michigan;
MD, SUNY (Downstate Medical Center)
Associate in Internal Medicine (Cardiology)

Zheng Cui (1996) Associate Professor of Pathology
Degree in Medicine, Tsuenyi Medical College (China);
MS, Shanghai Institute of Entomology, Chinese Academy of Sciences (China);
PhD, Massachusetts (Amherst)

Caron C. Cunningham (1970) Associate in Physiology and Pharmacology
BS, MS, Oklahoma State; PhD, Illinois

Patricia M. Cunningham (1978) Frances P. Gaines Professor of Education
BA, Rhode Island; MS, Florida State;
EdS, Indiana State; PhD, Georgia

James F. Curran (1988) Professor of Biology
BAAS, Delaware; MA, PhD, Rice

Paul Czoty (2003) Assistant Professor of Physiology and Pharmacology
BS, University of Notre Dame; PhD, Emory

Dale Dagenbach (1990) Professor of Psychology
BA, New College; MA, PhD, Michigan State

Ralph B. D’Agostino Jr. (1996) Professor of Public Health Sciences (Biostatistics)
AB, Bowdoin College; AM, PhD, Harvard
Associate in Regenerative Medicine

Mary M. Dalton (1996) Assistant Professor of Communication
BA, Wake Forest; MA, PhD, UNC-Greensboro

Larry W. Daniel (1982) Associate in Internal Medicine (Infectious Diseases)
BS, MS, Western Kentucky;
PhD, Memphis

Stephanie S. Daniel (2002) Assistant Professor of Psychiatry
BS, College of Charleston; MA, PhD, UNC-Greensboro
(Child Adolescent)

James B. Daunais (1999) Assistant Professor of Physiology and Pharmacology
BS, East Carolina;
PhD, East Carolina University School of Medicine

Lisa David (2003) Assistant Professor of Plastic and Reconstructive Surgery
BS, Indiana Wesleyan
MD, Indiana University School of Medicine

Paul A. Dawson (1991) Associate Professor of Internal Medicine (Gastroenterology)
BS, Florida; PhD, SUNY (Stony Brook)
Associate Professor of Comparative Medicine

Samuel A. Deadwyler (1977) Professor of Physiology and Pharmacology
BA, San Diego State; PhD, SUNY (Stony Brook)
Associate in Regenerative Medicine

Richard Dean (1986) Professor of Surgical Sciences (General)
BA, Virginia Military Institute;
MD, Medical College of Virginia
President and CEO, WFU Health Sciences

J. Donald deBethizy (1994) Adjunct Associate Professor of Physiology and Pharmacology
BS, Biology; MS, PhD, Utah State
Waldemar Debinski (2004) Professor of Surgical Sciences (Neurosurgery)
BSc, 2nd Royal Gymnasium S. Batory (Warsaw); Associate in Microbiology and Immunology
MD, Warsaw Medical School (Warsaw);
PhD, McGill University

Osvaldo Delbono (1994) Professor of Physiology and Pharmacology
MD, PhD, University of Buenos Aires School of Medicine Professor of Internal Medicine (Gerontology)

Rajendar Deora (2003) Assistant Professor of Microbiology and Immunology
BSc, Chemistry University of Calcutta, India
MSc, University of Calcutta, India; PhD, University of Illinois

Mary K. DeShazer (1988) Professor of English and Women’s and Gender Studies
BA, Western Kentucky;
MA, Louisville; PhD, Oregon

Ronald V. Dimock Jr. (1970) Thurman D. Kitchin Professor of Biology
BA, New Hampshire; MS, Florida State;
PhD, California (Santa Barbara)

Debra I. Diz (1970) Professor of Surgical Sciences (General)
BA, Randolph-Macon Woman’s College;
PhD, University of Tennessee Center for Health Sciences

David J. Doolittle (1993) Adjunct Associate Professor of Physiology and Pharmacology
BS, Wisconsin; PhD, Michigan State

Donald M. Dougherty (2004) Associate Professor of Psychiatry
AS, Alabama Aviation & Technical College;
BS, Bridgewater College; MS, PhD, Ohio University

Karin Drotschmann (2002) Assistant Professor of Cancer Biology
BS, Georg-August Universitaet Goettingen (Germany);
PhD, Institute of Molecular Genetics, Goettingen

Purnima Dubey (2004) Assistant Professor of Pathology
AB, PhD, University of Chicago

Thomas DuBose Jr. (2003) Professor of Internal Medicine (Nephrology)
BA, University of Alabama;
MD, University of Alabama at Birmingham

Jonathan E. Duchac (1993) Merrill Lynch Associate Professor of Accountancy
BBA, MAcc, Wisconsin (Madison);
PhD, Georgia (Wayne Calloway School of Business and Accountancy)

Robert H. DuRant (1998) Professor of Pediatrics
BA, Appalachian State; MA, PhD, Emory

Professor of Public Health Sciences (Social Science)

Doug Easterling (2004) Research Associate Professor of Public Health Sciences
BA, Carleton College; MA, UNC-Chapel Hill;
PhD, University of Pennsylvania, Wharton School

Delrae Eckman (2003) Assistant Professor of Pediatrics
BA, University of Arizona;
PhD, University of Nevada (Reno)

Julie Edelson (2001) Adjunct Assistant Professor in the Masters of Arts and Liberal Studies Program (English)
BA, Sarah Lawrence College;
PhD, Cornell

Curtis Drew Edwards (1980) Adjunct Associate Professor of Psychology
BA, Furman; MA, Wake Forest; PhD, Florida State
Iris J. Edwards (1993)
 BA, High Point; PhD, Wake Forest
 Associate Professor of Pathology
 (Comparative Medicine)

James C. Eisenach (1987)
 BA, Nebraska; MS, California Institute of Technology;
 MD, California
 Professor of Anesthesia (OB)

J. Charles Eldridge (1978)
 BA, North Central; MS, Northern Illinois;
 PhD, Medical College of Georgia
 Professor of Physiology and Pharmacology

Gerald W. Esch (1965)
 BS, Colorado College; MS, PhD, Oklahoma
 Charles M. Allen Professor of Biology

Paul D. Escott (1988)
 BA, Harvard; MA, PhD, Duke
 Reynolds Professor of History

Mark A. Espeland (1986)
 BS, Arizona; MA, PhD, Rochester
 Professor of Public Health Sciences
 (Biostatistics)

Andrew V. Ettin (1977)
 BA, Rutgers; MA, PhD, Washington
 Professor of English

Herman E. Eure (1974)
 BS, Maryland State; PhD, Wake Forest
 Professor of Biology

Gregory W. Evans (1996)
 BA, MA, Missouri
 Research Assistant Professor of Public Health Sciences

Robert H. Evans (1983)
 BA, Ohio Wesleyan; MS, New Hampshire;
 PhD, Colorado
 Professor of Education

Susan Elizabeth Fahrbach (2004)
 BA, University of Pennsylvania;
 BA, Oxford University (St. Hilda’s College);
 PhD, The Rockefeller University
 Reynolds Professor of Developmental Neuroscience, Biology

Douglas Fantz (2002)
 BS, Furman; PhD, University of South Carolina
 Adjunct Assistant Professor of Biology

Steven R. Feldman (1993)
 BA, Chicago; PhD, Duke
 Professor of Dermatology
 Professor of Pathology
 Professor of Public Health Sciences (Social Sciences)

Carlos M. Ferrario (1993)
 MD, Buenos Aires, Argentina
 Professor of Surgical Sciences (General)
 Professor of Physiology and Pharmacology
 Associate in Surgical Sciences (Orthopedics)
 Associate in Internal Medicine (Nephrology)

Jacquelyn S. Fetrow (2003)
 BS, Albright College;
 PhD, Pennsylvania State College of Medicine
 Reynolds Professor of Computer Science

Jorge P. Figueroa (1990)
 MD, Chile; PhD, Cornell
 Professor of Obstetrics and Gynecology

 BA, Wisconsin; PhD, Michigan
 Professor of Physiology and Pharmacology
 Ollen R. Nalley Associate Professor of Psychology

D. Lynn Flowers (2003)
 BA, MA, PhD, UNC-Greensboro
 Assistant Professor of Neurology (Neuropsychology)

Kristie L. Foley (2001)
 BA, MS, PhD, UNC-Chapel Hill
 Assistant Professor of Public Health Sciences
 (Social Sciences)
James L. Ford (1998) Z. Smith Reynolds Foundations Fellow and Associate Professor of Religion
BA, UNC-Chapel Hill;
MTS, Vanderbilt Divinity School; MA, PhD, Princeton

Mary F. Foskett (1997) Zachary T. Smith Associate Professor of Religion
BA, New York;
MDiv, Union Theological Seminary; PhD, Emory

Capri G. Foy (2005) Research Instructor of Public Health Sciences
BA, University of North Carolina-Chapel Hill;
MEd, University of Virginia;
MS, Wake Forest University Graduate School;
PhD, University of North Carolina-Greensboro

Dean J. Franco (2002) Assistant Professor of English
BA, University of California (Irvine);
MA, California State; PhD, University of Southern California

Arthur E. Frankel (1998) Adjunct Professor of Internal Medicine
AB, MD, Harvard

Donald E. Frey (1972) Professor of Economics
BA, Wesleyan; MDiv, Yale; PhD, Princeton

David P. Friedman (1991) Professor of Physiology and Pharmacology
BS, Pittsburgh;
MS, PhD, New York Medical College

Errin W. Fulp (2000) Assistant Professor of Computer Science
BS, MS, PhD, NC State

Curt D. Furberg (1986) Professor of Public Health Sciences
MD, PhD, University of Umea (Sweden)

R. Michael Furr (2005) Assistant Professor of Psychology
BA, William and Mary; MS, Villanova
PhD, University of California (Riverside)

H. Donald Gage Jr. (1999) Assistant Professor of Diagnostic Radiology
BA, South Florida;
MS, PhD, NC State

Pradeep Garg (2004) Professor of Radiological Sciences
BS, MS, Kurukshetra University (India);
PhD, Lucknow University (India)

A. Julian Garvin (2002) Professor of Pathology
BS, Furman; MD, PhD, Medical University of S.C.

Yaorong Ge (1995) Assistant Professor of Computer Science
BS, Graduate Diploma, Zhejiang (China);
MS, PhD, Vanderbilt (Engineering)

Randolf L. Geary (2004) Associate Professor of General Surgery
BS, University of Idaho;
MD, University of Washington School of Medicine

Steven Giles (2002) Assistant Professor of Communication
BA, Northern Kentucky; MA, Bowling Green State;
PhD, University of Kentucky

Michele K. Gillespie (2000) Kahle Associate Professor of History
BA, Rice; PhD, Princeton

Samuel T. Gladding (1990) Professor of Counseling
BA, MAEd, Wake Forest; MA, Yale; PhD, UNC-Greensboro
William H. Gmeiner (2000)
BA, University of Chicago; PhD, University of Utah
Professor of Cancer Biology

Dwayne Godwin (1997)
BA, University of West Florida;
PhD, University of Alabama at Birmingham
Associate Professor
of Neurobiology and Anatomy

David C. Goff Jr. (1996)
BS, Duke; MD, UNC-Chapel Hill;
PhD, Texas (Houston)
Professor of Public Health Sciences (Epidemiology)
Professor of Internal Medicine (General)

David Goldston
BA, NC State; MA, Wake Forest;
PhD, University of Iowa
Adjunct Associate Professor of Psychiatry (Child Adolescent)

BS, PhD, The Ohio State University;
MS, Purdue University
Associate Professor of Engineering Science
& Mechanics, Virginia Tech

David Goldston Adjunct Associate Professor of Psychiatry (Child Adolescent)
BA, NC State; MA, Wake Forest;
PhD, University of Iowa

William C. Gordon
BA, MA, Wake Forest; PhD, Rutgers
Provost

Kathleen A. Grant (1993)
BS, Santa Clara; MS, PhD, Washington
Professor of Physiology and Pharmacology

Jason M. Grayson (2002)
BS, University of Maryland;
PhD, University of Texas
Assistant Professor of Microbiology and Immunology

Qiang Gu (2004)
BS, University of Giessen (German);
PhD, Max Planck Institute for Brain Research (Germany)
Assistant Professor of Neurobiology and Anatomy

Martin Guthold (2003)
Bachelor, Universitat Ulm (Germany);
MA, PhD, University of Oregon
Assistant Professor of Physics

Mark A. Hall (1996)
BA, Middle Tennessee State;
JD, University of Chicago Law School
Professor of Public Health Sciences
(Social Sciences)

Craig A. Hamilton (1993)
BS, Georgia Tech; MS, PhD, NC State
Associate Professor of Biomedical Engineering
Associate in Regenerative Medicine

William S. Hamilton (1986)
BA, MA, PhD, Yale
Professor of Russian
Associate Dean of the College, WFU

James A. Hammarback (1991)
BS, PhD, Minnesota
Assistant Professor of Neurobiology and Anatomy

Robert E. Hampson (1993)
BS, Texas (San Antonio);
MS, Lehigh; PhD, Wake Forest
Associate Professor of Physiology and Pharmacology

BA, MA, Southern Illinois; PhD, Washington (St. Louis)
Charles E. Taylor Professor of English

Roy R. Hantgan (1983)
BS, Juniata; PhD, Cornell
Associate Professor of Biochemistry

Katy J. Harriger (2005)
BA, Edinboro State; MA, PhD, Connecticut
Professor of Political Science

John W. Hartz (2001)
BA, Albion; PhD, Wisconsin; MD, Harvard
Associate Professor of Pathology
Nathan O. Hatch (2005) President, Wake Forest University
AB, Wheaton College;
AM, Washington University; PhD Washington University

Angela Hattery (2004) Z. Smith Reynolds Foundation Fellow and Associate Professor of Sociology
BA, Carleton College;
MS, PhD, University of Wisconsin (Madison)

Gregory A. Hawkins (2003) Assistant Professor of Internal Medicine (Pulmonary/Critical Care)
BA, UNC-Chapel Hill;
PhD, University of Maryland (College Park)

Michael David Hazen (1974) Professor of Communication
BA, Seattle Pacific; MA, Wake Forest; PhD, Kansas

BA, Birmingham-Southern; BD, Southern Baptist Theological Seminary; PhD, Vanderbilt

Ashok N. Hegde (2001) Assistant Professor of Neurobiology and Anatomy
BS, MS, University of Bangalore, India;
PhD, Centre for Cellular and Molecular Biology, Hyderabad, India

Gary M. Hellman (2004) Adjunct Associate Professor of Physiology and Pharmacology
BS, Centre College of Kentucky;
MS, PhD, University of Kentucky; MBA, Wake Forest

Donald Helme (2003) Assistant Professor of Communication
BA, Michigan State; MA, Eastern Michigan;
PhD, University of Kentucky

Scott Edwards Hemby (2004) Associate Professor of Physiology and Pharmacology
BS, Barton College; MA, Emory;
PhD, Wake Forest

Donna A. Henderson (1997) Professor of Counseling
BA, Meredith; MA, James Madison; PhD, Tennessee

J. Edwin Hendricks Jr. (1961) Professor of History
BA, Furman; MA, PhD, Virginia

Craig K. Henkel (1978) Professor of Neurobiology and Anatomy
Associate in Surgical Sciences (Otolaryngology)
BS, Wheaton; PhD, Ohio State

David M. Herrington (1990) Professor of Internal Medicine (Cardiology)
Associate in Public Health Sciences (Epidemiology)
BS, Davidson; MD, UNC-Chapel Hill;
MHS, Johns Hopkins

Kevin P. High (1999) Associate Professor of Internal Medicine (Infectious Diseases)
Associate Professor of Internal Medicine (Hematology and Oncology)
BS, Bucknell;
MD, University of Virginia School of Medicine;
MS, Wake Forest

Elizabeth Hiltbold (2002) Assistant Professor of Microbiology and Immunology
Assistant Professor of Molecular Genetics
BA, Auburn; PhD, Emory

Yvonne Hinson (1997) PricewaterhouseCoopers Faculty Fellow and Associate Professor of Accountancy (Wayne Calloway School of Business and Accountancy)
BS, MBA, UNC-Charlotte;
PhD, University of Tennessee

Willie L. Hinze (1975) John B. White Professor of Chemistry
BS, MA, Sam Houston State; PhD, Texas A&M

Kenneth G. Hoglund (1990) Professor of Religion
BA, Wheaton; MA, PhD, Duke
Jefferson M. Holdridge (2002) Assistant Professor of English
BA, San Francisco State; MA, PhD, University College Dublin

Thomas Hollis (2003) Assistant Professor of Biochemistry
BS, Florida State; PhD, University of Texas (Austin)

Ross P. Holmes (2000) Professor of Surgical Sciences (Urology)
BS, University of Queensland;
BS, PhD, Australian National University

George M. Holzwarth (1983) Professor Emeritus of Physics
BA, Wesleyan; MS, PhD, Harvard

Natalie A. W. Holzwarth (1983) Professor of Physics
BS, Massachusetts Institute of Technology; MS, PhD, Chicago

David A. Horita (2000) Assistant Professor of Biochemistry
BA, Carleton College; PhD, University of Wisconsin

Fred L. Horton Jr. (1970) Albritton Professor of the Bible (Religion)
BA, UNC-Chapel Hill;
BD, Union Theological Seminary; PhD, Duke

Fredric T. Howard (1966) Professor of Mathematics
BA, MA, Vanderbilt; PhD, Duke

Timothy David Howard (2004) Assistant Professor of Pediatrics
BS, MS, PhD, Wake Forest (Medical Genetics) and Center for Human Genomics

Hugh N. Howards (1998) Sterge Faculty Fellow and Associate Professor of Mathematics
BA, Williams College; MA, CPhil,
PhD, University of California (San Diego)

Fang-Chi Hsu (2003) Assistant Professor of Public Health Sciences
BPH, MS, National Taiwan University;
PhD, Johns Hopkins

Jennifer J. Hu (1998) Adjunct Associate Professor of Cancer Biology
BS, Fu-Jen Catholic University (Taiwan);
MS, Northeast Louisiana; MS, Georgetown;
PhD, New Jersey Medical School

Michael L. Hughes (1984) Professor of History
BA, Claremont Men’s College; MA, PhD, California (Berkeley)

Susan M. Hutson (1990) Professor of Biochemistry
BA, Vanderbilt; PhD, Wisconsin (Madison)
Associate in Physiology and Pharmacology

Michael J. Hyde (1997) University Distinguished Professor of Communication Ethics
BS, Pittsburgh; MA, PhD, Purdue
and Professor of Communication

Simeon O. Ilesanmi (1993) Associate Professor of Religion
BA, University of Ife (Nigeria);
PhD, Southern Methodist

Dora Il’yasova (2003) Assistant Professor of Cancer Biology
MS, Moscow State University, Russia;
AN, Bach Institute of Biochemistry Academy of Science, Moscow
PhD, UNC-Greensboro; MSPH, PhD, UNC-Chapel Hill
Associate in Public Health Sciences (Epidemiology)

Kazushi Inoue (2005) Assistant Professor of Pathology
MD, Gifu University School of Medicine (Japan);
PhD, University of Tokyo Graduate School of Medicine (Japan)
Samy S. Iskandar (1973) Professor of Pathology
MB, BCh, University of Alexandria (Egypt); PhD, UNC-Chapel Hill

Sharon A. Jackson (1996) Associate Professor of Public Health Sciences
BS, MEd, Florida; PhD, South Florida

Douglas R. Jeffery (1994) Associate Professor of Neurology
BS, Maryland; PhD, MD, SUNY (Buffalo)

Janine M. Jennings (1998) Assistant Professor of Psychology
BSc, Toronto; PhD, McMaster University (Canada)

Mark Jensen (1993) Adjunct Associate Professor of Religion
BA, Houston Baptist;
MDiv, PhD, Southern Baptist Theo. Seminary

Miaohua Jiang (1999) Associate Professor of Mathematics
BS, Wuhan University (China);
MS, East China Normal University; PhD, Penn State

David J. John (1982) Associate Professor of Computer Science
BS, Emory and Henry; MS, PhD, Emory

A. Daniel Johnson (1998) Lecturer in Biology
BS, UNC-Charlotte; PhD, Wake Forest

James E. Johnson (1991) Associate Professor of Neurobiology and Anatomy
BA, UNC-Chapel Hill; PhD, Wake Forest

Bradley T. Jones (1989) Professor of Chemistry
BS, Wake Forest; PhD, Florida

Nancy L. Jones (1988) Associate Professor of Pathology
BS, Virginia Poly. Inst. and SU; PhD, Wake Forest

Paul Brandon Jones (2001) Assistant Professor of Chemistry
BS, Oklahoma State; PhD, Duke

Sara R. Jones (2000) Assistant Professor of Physiology and Pharmacology
BS/BA, University of Georgia; PhD, UNC-Chapel Hill

Paul E. Juras (1991) Associate Professor of Accountancy
BBA, MBA, Pace; PhD, Syracuse
(Wayne Calloway School of Business and Accountancy)

Claudia N. Thomas Kairoff (1986) Professor of English
BA, Notre Dame; MA, Virginia; PhD, Brandeis

Peter Kairoff (2003) Professor of Music
BA, University of California (San Diego);
MM, DMA, University of Southern California

Jay R. Kaplan (1979) Professor of Pathology (Comparative Medicine)
BA, Swarthmore; MA, PhD, Northwestern

Judy K. Kem (1995) Professor of Anthropology
BA, Western Kentucky;
MA, Louisville, PhD, UNC-Chapel Hill

Charles H. Kennedy (2003) Adjunct Professor of Psychology
BA, Eckerd College; AM, MPP, PhD, Duke

William C. Kerr (1970) Professor of Political Science
BS, Wooster; PhD, Cornell

Professor of Pathology
Professor of Public Health Sciences (Epidemiology)
Associate Professor of Neurology
Assistant Professor of Psychology
Adjunct Associate Professor of Religion
Associate Professor of Mathematics
Associate Professor of Computer Science
Lecturer in Biology
Associate Professor of Neurobiology and Anatomy
Associate in Surgery (Ophthalmology)
Professor of Chemistry
Associate Professor of Pathology
Assistant Professor of Chemistry
Assistant Professor of Physiology and Pharmacology
Associate Professor of Accountancy
Wayne Calloway School of Business and Accountancy
Professor of English
Professor of Music
Professor of Pathology (Comparative Medicine)
Professor of Anthropology
Adjunct Professor of Psychology
Associate Professor of Romance Languages (French)
Professor of Political Science
Professor of Physics
Charles A. Kimball (1996) Professor of Religion
BS, Oklahoma State; MDiv, Southern Baptist Theological Seminary; ThD, Harvard

Daniel B. Kim-Shapiro (1997) Z. Smith Reynolds Foundation Fellow and Associate Professor of Physics
BA, Carleton; MS, Southern Illinois; PhD, California (Berkeley)

S. Bruce King (1995) Associate Professor of Chemistry
BS, MS, West Virginia; PhD, Cornell

Ellen E. Kirkman (1975) Professor of Mathematics
BA, Wooster; MA, MS, PhD, Michigan State

Dalane Kitzman (2003) Professor of Internal Medicine (Cardiology)
BA, MD, Johns Hopkins

Scott W. Klein (1991) Associate Professor of English
AB, Harvard; BA, MA, Cambridge; MA, MPhil, PhD, Yale

Lee Knight (2003) Hilton Professor of Accountancy (Wayne Calloway School of Business and Accountancy)
BS, Western Kentucky; MA, PhD University of Alabama

Nancy Kock (2002) Professor of Pathology (Comparative Medicine)
BS, University of California (Irvine); DVM, PhD, University of California at Davis

L. Andrew Koman (1981) Professor of Surgery (Orthopedics)
AB, MD, Duke

Dilip K. Kondepudi (1987) Thurman D. Kitchin Professor of Chemistry
BS, Madras; MS, Indian Institute of Technology; PhD, University of Texas, Austin

Constantinos Koumenis (2002) Assistant Professor of Radiation Biology Associate in Cancer Biology
BS, Aristotle University (Greece); PhD, University of Houston
Associate Professor of Surgical Sciences (Neurosurgery)

Robert Kraft (2002) Assistant Professor of Biomedical Engineering Associate in Regenerative Medicine
BS, Rensselaer Polytechnic Institute; PhD, MIT

Stephen I. Kramer (1996) Associate Professor of Psychiatry and Behavioral Medicine
BA, Pennsylvania; MD, Thomas Jefferson

Steven Kridel (2002) Assistant Professor of Cancer Biology
BS, California State (LA); PhD, University of California (Irvine)

Kathleen A. Kron (1992) Professor of Biology
BS, MS, Michigan State; PhD, Florida

Philip Kuberski (1989) Professor of English
BA, MA, PhD, California (Irvine)

Gregory L. Kucera (1993) Research Assistant Professor of Internal Medicine (Hematology/Oncology)
BS, Davidson; PhD, Wake Forest
Associate in Biochemistry
Associate in Cancer Biology
Associate in Physiology and Pharmacology
Professor of Microbiology and Immunology

Louis S. Kucera (1970) William L. Poteat Professor of Biology
BS, St. John’s; MS, Creighton; PhD, Missouri

Raymond E. Kuhn (1968) BS, Carson-Newman; PhD, Tennessee
George Kulik (2002)
DVM, Ukrainian Agricultural Academy (Ukraine);
PhD, Institute for Experimental Pathology (Ukraine)
Assistant Professor of Cancer Biology

Timothy E. Kute (1987)
BS, Cincinnati; PhD, Louisville
Associate Professor of Pathology
Associate in Cancer Biology

James Kuzmanovich (1972)
BS, Rose Polytechnic; PhD, Wisconsin
Professor of Mathematics

Abdessadek Lachgar (1991)
BS, MS, PhD, University of Nantes (France)
Professor of Chemistry

Hugo C. Lane (1973)
Licentiate of the Biological Sciences;
Doctorate of the Biological Sciences, Geneva
Professor of Biology

Wei Lang (2001)
BS, Xi’an Jiaotong University;
PhD, University of Pittsburgh
Assistant Professor of Public Health Sciences
(Biostatistics)

Ethan Lange (2003)
BA, MA, University of California;
MS, PhD, University of Michigan (Ann Arbor)
Assistant Professor of Public Health Services
(Biostatistics)

Leslie Lange (2003)
BS, University of Michigan (Dearborn)
MS, PhD, University of Michigan (Ann Arbor)
Assistant Professor of Public Health Services
(Epidemiology)

Carl Langefeld (2000)
BA, BS, Concordia;
MS, University of Nebraska-Lincoln; MS, Florida State;
PhD, University of Michigan
Assistant Professor of Public Health Sciences
(Biostatistics)

Paul J. Laurienti (2000)
BS, University of Houston;
PhD, University of Texas
Assistant Professor of Diagnostic Radiology
Associate in Biomedical Engineering

Mark R. Leary (1985)
BA, West Virginia Wesleyan; MA, PhD, Florida
Thurman D. Kitchin Professor of Psychology

Claudine Legault (1994)
BS, MS, University of Quebec (Montreal);
PhD, UNC-Chapel Hill
Associate Professor of Public Health Sciences
(Biostatistics)

Xiaoyan (Iris) Leng (2005)
MS, MD, Beijing Medical University (PR China);
MS, PhD, University of California, Davis
Assistant Professor of Public Health Sciences
(Biostatistics)

BA, Texas Wesleyan;
MDiv, Southwestern Baptist Theological Seminary;
PhD, Boston
Adjunct Professor of Religion
Dean of the Divinity School

BA, Texas Wesleyan;
MEd, MA, University of Louisville; PhD, Indiana
Associate Professor of Humanities

Jeffrey D. Lerner (1998)
BA, MA, PhD, Wisconsin (Madison)
Associate Professor of History

Liwu Li (2000)
BS, Hebei Normal University, China;
MS, Academy of Sciences of China;
PhD, University of Michigan
Assistant Professor of Internal Medicine
(Infectious Diseases)
Anthony Liguori (1998) Associate Professor of Physiology and Pharmacology
BS, Georgetown; MA, PhD, Boston

Grace Jeong Ok Lim (2005) Assistant Professor of Tissue Engineering
MS, Cornell; PhD, University of Massachusetts (Wake Forest Institute for Regenerative Medicine)

Kerry M. Link (1996) Professor of Diagnostic Radiology
BS, St. John’s; MD, Rochester

Mark O. Lively (1983) Professor of Biochemistry
BS, PhD, Georgia Institute of Technology

John T. Llewellyn (1990) Associate Professor of Communication
AB, UNC-Chapel Hill; MA, Arkansas; PhD, Texas (Austin)

BA, Mississippi; MA, Colorado; PhD, UNC-Chapel Hill

Pat C.W. Lord (2000) Lecturer in Biology
BS, NC State; PhD, Wake Forest

William B. Lorentz Jr. (1974) Professor of Pediatrics
BA, West Virginia; MD, Jefferson

Allan D. Louden (1985) Associate Professor of Communication
BA, Montana State; MA, University of Montana; PhD, Southern California

Brian Love (2005) Professor of Materials Science and Engineering,
BS, MS, University of Illinois, (Urbana-Champaign); PhD, Southern Methodist

W. Todd Lowther (2003) Assistant Professor of Biochemistry
BA, Stetson; PhD, University of Florida

Douglas S. Lyles (1978) Professor of Biochemistry
BA, Pennsylvania; PhD, Mississippi

David Lyons (1998) Assistant Professor of Physiology and Pharmacology
BS, Pennsylvania State; PhD, Boston

Jed Macosko (2005) Assistant Professor Office of Research
BS, Massachusetts Institute of Technology; PhD, University of California (Berkeley)

Barry G. Maine (1981) Professor of English
BA, Virginia; MA, PhD, UNC-Chapel Hill

Joseph A. Maldjian (2005) Associate Professor of Diagnostic Radiology
BA, Princeton; MD, UMDNJ-New Jersey Medical School

T. Conn Mallett (2003) Research Assistant Professor of Biochemistry
BS, Virginia Polytechnic Institute; PhD, Wake Forest

Janeen Manuel (2002) Assistant Professor of Public Health Sciences
BS, Barry; MS, PhD, UNC-Greensboro (Social Sciences)

Anthony P. Marsh (1996) Associate Professor of Health and Exercise Science
BPE, MEd, University of Western Australia; PhD, Arizona State

Dale R. Martin (1982) Wayne Calloway Professor of Accountancy
BS, MS, Illinois State; DBA, Kentucky

Wayne Calloway School of Business and Accountancy
David F. Martin (1991)
AB, Dartmouth; MD, Johns Hopkins
Associate Professor of Surgery (Orthopedics)
Associate in Sports Medicine

BA, Wake Forest; MA, Duke; PhD, Columbia
University Professor of Religion

Thomas J. Martin (1995)
BS, UNC-Chapel Hill;
PhD, Medical College of Virginia
Associate Professor of Physiology and Pharmacology

Yolanda Mateo (2004)
BS, University of Oviedo (Spain);
PhD, University of the Basque Country (Spain)
Instructor in Physiology and Pharmacology

BS, Indiana (Bloomington); MS, PhD, University of New Orleans
Assistant Professor of Psychiatry

G. Eric Matthews (1979)
BS, PhD, UNC-Chapel Hill
Professor of Physics

J. Gaylord May (1961)
BS, Wofford; MA, PhD, Virginia
Professor of Mathematics

Charles E. McCall (1968)
BS, MD, Wake Forest
Professor of Internal Medicine (Molecular Medicine)
Professor of Microbiology and Immunology
Associate in Internal Medicine (Pulmonary)

Anita McCauley (2002)
BS, Elon College; PhD, Wake Forest
Adjunct Assistant Professor of Biology

Brian A. McCool (2003)
BS, University of Texas (Austin);
PhD, Vanderbilt
Assistant Professor of Physiology and Pharmacology

Leah P. McCoy (1990)
BS, West Virginia Inst. of Tech.;
MA, Maryland; EdD, Virginia Poly. Inst. and SU
Associate Professor of Education

John G. McHaffie (1994)
AS, Tidewater Community College;
BS, Old Dominion; PhD, Virginia Commonwealth
Associate Professor of Neurobiology and Anatomy

Jill Jordan McMillan (1983)
BA, Baylor; MA, Arkansas; PhD, Texas (Austin)
Professor of Communication

John McNally (2002)
BA, Southern Illinois;
MFA, The Iowa Writers’ Workshop, University of Iowa;
PhD, University of Nebraska (Lincoln)
Assistant Professor of English

Linda C. McPhail (1984)
BS, Methodist College;
MS, PhD, Wake Forest
Professor of Biochemistry
Associate in Internal Medicine (Infectious Diseases)

Jane Mead (1999)
BA, Vassar College; MA, Syracuse;
MFA, University of Iowa
Associate Professor of English
and Poet-in-Residence

Paul J. Meis (1996)
BA, MD, Iowa
Professor of Obstetrics and Gynecology
Associate Professor of Family Medicine

Gordon A. Melson (1991)
BSc, PhD, Sheffield (England)
Professor of Chemistry
Dean, Graduate School of Arts and Sciences

David C. Merrill (2004)
BA, Dartmouth College;
MS, PhD, MD, Medical College of Wisconsin
Associate Professor of Obstetrics and Gynecology
(Maternal-Fetal Medicine)
Batja Mesquita (1997)
Lee Faculty Fellow and Associate Professor of Psychology
BSc, MSc, PhD, University of Amsterdam

Stephen P. Messier (1981)
BS, MS, Rhode Island; PhD, Temple
Professor of Health and Exercise Science

Deborah A. Meyers (2004)
BA, Ithaca College;
PhD, Indiana University School of Medicine
Professor of Pediatrics (Medical Genetics) and Center for Human Genomics

BA, University of Washington; MA, PhD, Chicago
Associate Professor of History

Shannon L. Mihalko (1999)
BS, Wake Forest;
MS, MS, PhD, University of Illinois
Dunn-Riley Junior Professor and Associate Professor of Health and Exercise Science

Allison Miller (1999)
BS, PhD, University of Georgia
Adjunct Associate Professor of Physiology and Pharmacology

Gary D. Miller (1996)
BS, Kansas; MS, Kansas State;
PhD, California (Davis)
Associate Professor of Health and Exercise Science

Henry S. Miller (1972)
BS, MD, Wake Forest
Professor Emeritus of Internal Medicine

Mark S. Miller (1996)
BS, Fordham;
MA, MPhil., PhD, Columbia
Professor of Cancer Biology
Professor of Physiology and Pharmacology

Michael E. Miller (1993)
BA, Wooster; MS, Cincinnati; PhD, Michigan
Professor of Public Health Sciences (Biostatistics)

Timothy E. Miller (2004)
BS, Mississippi State;
PhD, Vanderbilt
Adjunct Assistant Professor of Computer Science
Parallel Computing Systems Administrator, Departments of Computer Science, Physics, and Information Systems

Carol E. Milligan (1997)
BS, St. Josephs;
PhD, Medical College of Pennsylvania
Associate Professor of Neurobiology and Anatomy

Joseph O. Milner (1969)
BA, Davidson; MA, PhD, UNC-Chapel Hill
Professor of Education

Nilamadhab Mishra (2002)
BSc, Bhadrak College (India);
MD, MKCG Medical College (India)
Assistant Professor of Internal Medicine (Rheumatology and Clinical Immunology)

Ananda Mitra (1994)
B Tech, Indian Inst. of Technology (Kharagpur);
MA, Wake Forest; PhD, Illinois (Urbana)
Associate Professor of Communication

Steven B. Mizel (1985)
BA, California (Berkeley);
PhD, Stanford
Professor of Microbiology and Immunology
Associate in Internal Medicine (Infectious Diseases)
Associate in Dermatology

Drake Morgan (2001)
BA, Seton Hall; PhD, UNC–Chapel Hill
Assistant Professor of Physiology and Pharmacology

Timothy M. Morgan (1983)
BA, MS, PhD, California (Los Angeles)
Professor of Public Health Sciences (Biostatistics)

Charles S. Morrow (1993)
AB, Cornell; PhD, Saint Louis;
MD, Missouri (Columbia)
Associate Professor of Biochemistry
Associate in Cancer Biology
Associate in Pediatrics
Michael J. Morykwas (1997)
BS, University of Detroit; MS, PhD, University of Michigan
Associate Professor of Surgical Sciences (Plastic and Reconstructive)
Associate in Biomedical Engineering
Associate in Regenerative Medicine
Professor of Surgery

William M. Moss (1971)
BA, Davidson; PhD, UNC-Chapel Hill
Professor of English

Gloria K. Muday (1991)
BS, Virginia Poly. Inst. and SU; PhD, Purdue
Professor of Biology

Michael T. Munley (2001)
BSE, PhD, Duke
Associate Professor of Radiation Oncology
Associate in Diagnostic Radiology

Josyf Mychaleckyj (1999)
BS, MS, PhD, Oxford
Assistant Professor of Internal Medicine (Pulmonary)
Assistant Professor of Physiology and Pharmacology
Assistant Professor of Public Health Sciences

Michael A. Nader (1993)
BS, Wayne State; PhD, Minnesota
Professor of Physiology and Pharmacology
Associate in Diagnostic Radiology

Michelle J. Naughton (1993)
BA, PhD, Iowa; MA, Michigan State; MPH, Minnesota
Associate Professor of Public Health Sciences (Social Sciences)
Associate Professor of Surgery (Orthopedics)

BA, Oklahoma Baptist; MAEd, Wake Forest; PhD, UNC–Greensboro
Assistant Professor of Counseling

Barbara Nicklas (2003)
BSE, NE Missouri State; MS, Iowa State; PhD, University of Maryland
Associate Professor of Internal Medicine (Gerontology)
Associate Professor of Health and Exercise Science

Linda N. Nielsen (1974)
BA, MS, EdD, Tennessee
Professor of Education

Patricia A. Nixon (1999)
BS, Boston; MA, PhD, University of Pittsburgh
Associate Professor of Health and Exercise Science

Ronald E. Noftle (1967)
BS, New Hampshire; PhD, Washington
Professor of Chemistry

James L. Norris III (1989)
BS, MS (science), MS (statistics), NC State; PhD, Florida State
Professor of Mathematics

Joseph T. O'Flaherty (1982)
BA, MD, Temple
Research Professor of Internal Medicine (Infectious Diseases)

Kenneth S. O'Rourke (1994)
BS, California (Berkeley); MD, George Washington
Associate Professor of Internal Medicine (Rheumatology)

BA, MD, UNC-Chapel Hill
Professor of Pediatrics
Associate in Public Health Sciences (Social Sciences)

Ronald W. Oppenheim (1983)
BA, Des Moines; PhD, Washington (St. Louis)
Professor of Neurobiology and Anatomy

David Ornelles (1993)
BS, Hawaii; PhD, Massachusetts Inst. of Technology
Associate Professor of Microbiology and Immunology
Associate in Cancer Biology

Gillian R. Overing (1979)
BA, Lancaster (England); MA, PhD, SUNY (Buffalo)
Professor of English
John Owen (1993)
BScM, MD, McMaster (Ontario, Canada);
Associate Professor of Internal Medicine
(Hematology/Oncology)
Associate in Pathology

Anthony S. Parent (1989)
BA, Loyola; MA, PhD, California (Los Angeles)
Associate Professor of History

Griffith D. Parks (1993)
BA, Colorado (Boulder);
PhD, Wisconsin (Madison)
Associate Professor of Microbiology and Immunology

John S. Parks (1982)
BS, NC State; MS, PhD, Wake Forest
Professor of Pathology (Comparative Medicine)
Associate in Biochemistry

Derek Parsonage (1991)
BSc, PhD, Birmingham (England)
Research Assistant Professor of Biochemistry

BS, MS, Wake Forest; PhD, Duke
Assistant Professor of Computer Science

R. Mark Payne (1997)
BS, Washington and Lee;
MD, Texas (Houston)
Adjunct Associate Professor of Pediatrics

Mary L.B. Pendergraft (1997)
AB, PhD, UNC-Chapel Hill
Associate Professor of Classical Languages

Raymond B. Penn (2003)
BA, MS Ed, University of Pennsylvania;
PhD, Temple
Associate Professor of Internal Medicine
(Pulmonary/Critical Care)
Associate in Physiology and Pharmacology
Associate Professor of Biochemistry

Fred W. Perrino (1990)
BS, Ohio State; PhD, Cincinnati
Professor of Internal Medicine
(Pulmonary/Critical Care)

BA, Yale;
PhD, MD, University of Pittsburgh School of Medicine
Associate Professor of Pediatrics
(Medical Genetics)
Associate in Surgical Sciences (Ophthalmology)
Associate in Pathology
Associate in Regenerative Medicine
Associate Professor of Japanese
(East Asian Languages and Cultures)

Mark J. Pettenati (1986)
BS, St. Bonaventure; PhD, West Virginia
Associate Professor of Pediatrics
(Medical Genetics)
Associate in Surgical Sciences (Ophthalmology)
Associate in Pathology
Associate in Regenerative Medicine

David Phillips (2003)
BA, Cornell; MArch, Washington;
MA, PhD, Pennsylvania
Assistant Professor of Physiology and Pharmacology

Peter Pierre (2003)
BS, University of Wisconsin (Oshkosh);
MD, PhD, University of Memphis
Reynolds Professor of Mathematics
and Computer Science
Associate Professor of Biochemistry

Robert J. Plemmons (1990)
BS, Wake Forest; PhD, Auburn
Associate Professor of Biochemistry

Leslie B. Poole (1994)
BA, PhD, Wake Forest
Professor of Physiology and Pharmacology

Linda J. Porrino (1991)
AB, Bates; PhD, New York
Associate Professor of Surgical Sciences (General)

Gaddamanugu L. Prasad (2000)
PhD, Indian Institute of Science
Professor of Public Health Sciences
(Epidemiology)
Walter S. Pritchard (1993) Adjunct Associate Professor of Physiology and Pharmacology
BA, Ohio State;
MA, California State (Los Angeles); PhD, Cincinnati

Sara A. Quandt (1994) Professor of Public Health Sciences (Epidemiology)
Associate in Family Medicine
BA, Lawrence;
MA, PhD, Michigan State

Stephen R. Rapp (1990) Professor of Psychiatry (Geriatrics)
Associate in Public Health Sciences (Social Sciences)
Professor of Dermatology
BA, MA, Bradley;
PhD, West Virginia

Jerry W. Reagan Jr. (1996) Assistant Professor of Pathology
BS, Mars Hill; PhD, Wake Forest

Beth A. Reboussin (1996) Associate Professor of Public Health Sciences (Biostatistics)
BA, Loyola; MS, PhD, Johns Hopkins

David M. Reboussin (1994) Associate Professor of Public Health Sciences (Biostatistics)
BA, Pomona; MS, Chicago; PhD, Wisconsin

Mary Lynn B. Redmond (1989) Associate Professor of Education
BA, EdD, UNC-Greensboro; MEd, UNC-Chapel Hill

Thomas C. Register (1991) Associate Professor of Pathology (Comparative Medicine)
Associate in Surgical Sciences (Orthopedics)
BS, Francis Marion; PhD, South Carolina

Sean D. Reid (2003) Assistant Professor of Microbiology and Immunology
BS, Bucknell; PhD, Pennsylvania State

Burton V. Reifler (1987) Professor of Psychiatry (Geriatrics)
BA, MD, Emory; MPH, University of Washington

W. Jack Rejeski (1978) Thurman D. Kitchin Professor of Health and Exercise Science
Adjunct Professor of Psychology
BS, Norwich;
MA, PhD, Connecticut

Scott Rhodes (2004) Assistant Professor of Public Health Sciences (Social Sciences)
BA, College of William and Mary;
MPH, University of South Carolina;
PhD, University of Alabama (Birmingham)

Paul M. Ribisl (1973) Charles E. Taylor Professor of Health and Exercise Science
BS, Pittsburgh; MA, Kent State; PhD, Illinois

Stephen S. Rich (1994) Professor of Public Health Sciences
Professor of Neurology
Associate in Cancer Biology
Assistant Professor of English
BS, NC State; MS, PhD, Purdue

BA, Goucher College; MA, PhD, Princeton

Charles L. Richman (1968)
BA, Virginia; MS, Yeshiva; PhD, Cincinnati

David Riddle (1997) Associate Professor of Neurobiology and Anatomy
BS, UNC-Chapel Hill; PhD, University of Michigan

Michael E. C. Robbins (2001)
Professor of Radiation Oncology (Radiation Biology)
Associate in Cancer Biology
Associate in Surgical Sciences (Neurosurgery)
BSc, PhD, Thames Polytechnic Woolwich, London

David C. S. Roberts (1999)
Professor of Physiology and Pharmacology
BS, University of Victoria;
MS, PhD, University of British Columbia
Stephen B. Robinson (1991) Professor of Mathematics
BA, PhD, California (Santa Cruz)

Randall G. Rogan (1990) Associate Professor of Communication
BA, St. John Fisher College; MS, PhD, Michigan State

Marielba Rojas-Larrazabal (2002) Assistant Professor of Mathematics
BS, MS, Simon Bolivar University (Venezuela);
MA, PhD, Rice

April Elizabeth Ronca (2004) Associate Professor of Obstetrics & Gynecology
BS, MA, PhD, Ohio State University

Karen L. Roper (1999) Assistant Professor of Psychology
BA, Southwestern; MS, PhD, Kentucky

James C. Rose (1976) Professor of Obstetrics and Gynecology (Maternal/Fetal)
Professor of Physiology and Pharmacology
BS, Richmond;
MS, PhD, Medical College of Virginia

Bruce K. Rubin (1997) Professor of Pediatrics
Associate in Internal Medicine (Pulmonary)
Associate in Diagnostic Radiology
Associate in Regenerative Medicine
MD, Tulane

Lawrence L. Rudel (1973) Professor of Pathology (Comparative Medicine)
Professor of Biochemistry
BS, Colorado; MS, PhD, Arkansas

Susan Zayer Rupp (1998) Assistant Professor of History
AB, Grinnell College; AM, Harvard; AM, PhD, Stanford

Akbar Salam (2003) Assistant Professor of Chemistry
BSc, PhD, University of London (England)

Michele Sale (2003) Assistant Professor of Internal Medicine (Endocrinology)
Associate in Biochemistry
BSc (2), PhD, University of Tasmania

Emilio Salinas (2002) Associate Professor of Neurobiology and Anatomy
BSc, Universidad Nacional Autonomade (Mexico);
PhD, Brandeis

Fred Salsbury Jr. (2003) Assistant Professor of Physics
BS, University of Chicago;
PhD, University of California (Berkley)

Herman H. Samson III (1993) Professor Emeritus of Physiology and Pharmacology
BA, Colorado; MA, McMaster; PhD, Waterloo

Yolanda Sanchez (2002) Instructor in Internal Medicine (Molecular Medicine)
Associate in Microbiology and Immunology
BS, PhD, University of Oviedo (Spain)

David C. Sane (1993) Associate Professor of Internal Medicine (Cardiology)
Associate in Physiology and Pharmacology
BS, Wake Forest; MD, Duke

Peter Santiago II (1987) Associate Professor of Biomedical Engineering
Associate in Regenerative Medicine
BS, MS, Virginia Poly. Inst. and SU;
PhD, NC State

Paul Savage (1991) Associate Professor of Internal Medicine (Hematology/Oncology)
BS, MD, Tufts

James A. Schirillo (1996) Associate Professor of Psychology
BA, Franklin and Marshall; PhD, Northeastern
Gary G. Schwartz (1999)
BA, Pomona College; PhD, State University of New York; MPH, PhD, UNC-Chapel Hill
Associate Professor of Cancer Biology
Associate in Public Health Sciences

Fernando Segade (2003)
BS, MS, PhD, University of Santiago, Spain
Assistant Professor of Internal Medicine (Endocrinology)
Associate in Biochemistry

Susan Sergeant (1999)
BS, Washington College; PhD, University of Missouri (Columbia)
Instructor in Biochemistry

Catherine E. Seta (1987)
BA, MA, PhD, UNC-Greensboro
Associate Professor of Psychology

MBBS, Mysore University (India); MD, Kasturba Hospital (India)
Assistant Professor of Pediatrics (Medical Genetics)

Gregory S. Shelnness (1990)
BA, PhD, New York
Associate Professor of Pathology (Comparative Medicine)
Associate in Biochemistry

Robert J. Sherertz (1990)
BS, Wake Forest; MD, Virginia
Professor of Internal Medicine (Infectious Diseases)

Zakariya K. Shihabi (1972)
BS, Alexandria; MS, Texas A&M; PhD, South Dakota
Professor of Pathology

Carol A. Shively (1986)
BA, Hiram; MA, PhD, California (Davis)
Professor of Pathology (Comparative Medicine)
Professor of Psychology
Associate in Physiology and Pharmacology

Sally A. Shumaker (1995)
BA, Wayne State; MA, PhD, Michigan
Professor of Public Health Sciences (Social Sciences)
Professor of Internal Medicine (Gerontology)
Professor of English

Gale Sigal (1987)
BA, City College (New York); MA, Fordham; PhD, City University of New York (Graduate Center)
Z. Smith Reynolds Foundation Fellow and Associate Professor of Biology
Professor of Biology

Wayne L. Silver (1985)
BA, Pennsylvania; PhD, Florida State
Professor of Anthropology

Jeanne M. Simonelli (1999)
BA, MA, PhD, University of Oklahoma; M.P.H. Oklahoma University Health Science Center
Professor of History

Michael L. Sinclair (1968)
BA, Wake Forest; AM, PhD, Stanford
Rubin Professor of American Ethnic Studies and Professor of Sociology
Professor of History

Earl Smith (1998)
BA, State University of New York; MA, PhD, Connecticut
Professor of History

J. Howell Smith (1965)
BA, Baylor; MA, Tulane; PhD, Wisconsin
Professor of History

James E. Smith (1989)
BA, California State (Northridge); PhD, Minnesota
Professor of Physiology and Pharmacology
Associate in Regenerative Medicine

Kathleen B. Smith (2005)
BA, Baldwin-Wallace; MA, PhD, Purdue
Professor of Political Science

Margaret Supplee Smith (1979)
BS, Missouri; MA, Case Western Reserve; PhD, Brown
Harold W. Tribble Professor of Art
Peter B. Smith (1976)
BS, Spring Hill; PhD, Tennessee
Professor of Biochemistry
Associate in Neurology

Thomas L. Smith (1982)
BS, Texas A&M; PhD, Wake Forest
Associate Professor of Surgery (Orthopedic)
Associate in Physiology and Pharmacology
Associate in Regenerative Medicine

BS, MS, California State (San Diego);
PhD, California (Los Angeles)
Charles H. Babcock Chair of Botany (Biology)

Beverly Snively (2000)
AB, Colby College;
MS, Medical College of Virginia;
PhD, Johns Hopkins University School of Hygiene and Public Health
Associate Professor of Public Health Sciences
(Biostatistics)

Shay Soker (2004)
BSc, MSc, The Hebrew University (Israel);
PhD, Technion-Israel Institute of Technology (Israel)
Associate Professor of Regenerative Medicine
Associate in Physiology and Pharmacology
Associate Professor of Surgical Sciences (Urology)

Cecilia H. Solano (1977)
BA, Harvard;
MA, PhD, Johns Hopkins
Associate Professor of Psychology
Associate Dean, Graduate School of Arts and Sciences

William E. Sonntag (1984)
BS, Tufts; MS, Bridgeport; PhD, Tulane
Professor of Physiology and Pharmacology

Mary Sorci-Thomas (1987)
BS, Louisiana State; PhD, Wake Forest
Professor of Pathology (Comparative Medicine)
Associate in Biochemistry

BA, Davidson College;
MD, UNC-Chapel Hill; MPH, Johns Hopkins
Associate Professor of Family and Community Medicine
Associate in Public Health Sciences (Epidemiology)

Richard W. St. Clair (1967)
BS, PhD, Colorado State
Professor of Pathology
Associate in Physiology and Pharmacology

Terry Stanford (1997)
BA, Connecticut College;
PhD, University of Connecticut
Assistant Professor of Neurobiology and Anatomy

Barry E. Stein (1994)
BA, MA, Queens College;
PhD, City University of New York
Professor of Neurobiology and Anatomy
Professor of Neurology

Lisa Sternlieb (1999)
BA, Vassar College; MA, New York; PhD, Princeton
Associate Professor of English

Joel Stitzel (2004)
BS, PhD, Virginia Polytechnic;
MS, Virginia Commonwealth
Assistant Professor of Biomedical Engineering
Associate in Regenerative Medicine

Eric R. Stone (1994)
BS, Delaware; MA, PhD, Michigan
Associate Professor of Psychology

Jack W. Strandhoy (1973)
BS, Illinois; MS, PhD, Iowa
Professor of Physiology and Pharmacology
Associate in Surgical Sciences (General)
Associate in Internal Medicine (Nephrology)
Registrar

Dorothy A. Sugden
BA, Salem College, MA, Wake Forest
Adjunct Associate Professor of Internal Medicine (Geriatrics)

Patricia K. Suggs (1987)
BS, Illinois State; MDiv., Duke;
MEd, PhD, UNC-Greensboro
Darrell D. Sumner (1993) Adjunct Associate Professor of Physiology and Pharmacology
AB, PhD, Kansas

Lynn Sutton (2004) Director of the Z. Smith Reynolds Library
AB, MLS, University of Michigan
PhD, Wayne State University

Andrew John Sweatt (1988) Research Assistant Professor of Biochemistry
BA, Johns Hopkins; MS, Rhode Island; PhD, Duke

Robert L. Swofford (1993) Professor of Chemistry
BS, Furman; PhD, California (Berkeley)

W. Edward Swords (2002) Assistant Professor of Microbiology and Immunology
BS, Auburn; MS, Mississippi State; PhD, University of Alabama (Birmingham)

Brian W. Tague (1995) Associate Professor of Biology
ScB, AB, Brown; PhD, California (San Diego)

E. Ann Tallant (1963), Associate Professor of Surgical Sciences (General)
BS, Memphis State; PhD, University of Tennessee Center for the Health Sciences

Kim H. Tan (2000) Adjunct Professor of Physiology and Pharmacology
BS, National University of Singapore; MS, University of Minnesota, St. Paul; PhD, Loyola (Chicago)

Stephen B. Tatter (1997) Assistant Professor of Surgery (Neurosurgery)
BS, University of Michigan; MD, PhD, Rockefeller/Cornell Medical College

Thomas C. Taylor (1971) Professor of Accountancy Emeritus
BS, MA, UNC-Chapel Hill; PhD, Louisiana State

Michael J. Thomas (1980) Professor of Biochemistry
BS, Indiana; PhD, California

Stan J. Thomas (1983) Associate Professor of Computer Science
BS, Davidson; PhD, Vanderbilt

Joseph R. Tobin (1994) Professor of Pediatric (Anesthesia)
BA, SUNY (Buffalo); MD, SUNY (Syracuse)

James F. Toole (1962) Professor of Neurology
BA, Princeton; MD, Cornell; LLB, LaSalle

Janet Tooze (2005) Assistant Professor, Public Health Sciences
AB, Earlham College; MPH, Harvard School of Public Health; PhD, University of Colorado

Todd C. Torgersen (1989) Associate Professor of Computer Science
BS, MS, Syracuse; PhD, Delaware

Frank M. Torti (1996) Professor of Internal Medicine (Hematology and Oncology)
BA, MA, Johns Hopkins; MD, MPH, Harvard

Suzy V. Torti (1993) Associate Professor of Biochemistry
BA, Reed; PhD, Tufts

Ralph B. Tower (1980) Wayne Calloway Professor of Taxation
BA, PhD, UNC-Chapel Hill; MBA, Cornell

Alan J. Townsend (1990) Associate in Cancer Biology
BS, South Florida; PhD, UNC-Chapel Hill

James F. Toole (1962) Professor of Public Health Sciences
BA, Princeton; MD, Cornell; LLB, LaSalle

Janet Tooze (2005) Assistant Professor, Public Health Sciences
AB, Earlham College; MPH, Harvard School of Public Health; PhD, University of Colorado

Todd C. Torgersen (1989) Associate Professor of Computer Science
BS, MS, Syracuse; PhD, Delaware

Frank M. Torti (1996) Professor of Internal Medicine (Hematology and Oncology)
BA, MA, Johns Hopkins; MD, MPH, Harvard

Suzy V. Torti (1993) Associate Professor of Biochemistry
BA, Reed; PhD, Tufts

Ralph B. Tower (1980) Wayne Calloway Professor of Taxation
BA, PhD, UNC-Chapel Hill; MBA, Cornell

Alan J. Townsend (1990) Associate in Cancer Biology
BS, South Florida; PhD, UNC-Chapel Hill

184
Christopher P. Turner (2004) Assistant Professor of Neurobiology and Anatomy
BSc, Chelsea College; MS, Indiana (Pennsylvania); PhD, University of Texas Medical Branch

Michael Tytell (1980) Professor of Neurobiology and Anatomy
BA, Queen’s College (New York); MS, Purdue; PhD, Baylor College of Medicine

Robert W. Utley Jr. (1987) Associate Professor of Humanities
BA, Wake Forest; MA, PhD, Duke

Olga Valbuena (1996) Associate Professor of English
BA, Irvine; MA, PhD, SUNY (Buffalo)

James P. Vaughn (1998) Assistant Professor of Cancer Biology
BS, Duke; PhD, Virginia

Laura J. Veach (2000) Assistant Professor of Counseling
BA, MAEd, Wake Forest; PhD, University of New Orleans

Ramon Velez (1997) Professor of Internal Medicine
BS, City College of New York; MD, New York University; MPH, UNC-Chapel Hill; MSc, London School of Hygiene and Tropical Medicine

Cynthia J. Villagomez (2000) Assistant Professor of History
AB, San Diego State; MA, PhD, University of California

Mara Vitolins (2001) Associate Professor of Public Health Sciences (Epidemiology)
ALA, North Idaho Junior College; BA, The College of Idaho; DrPH, MPH, Loma Linda

Mary Lou Voytko (1994) Associate Professor of Neurobiology and Anatomy
BS, Baldwin-Wallace College; PhD, SUNY (Syracuse)

Kent E. Vrana (1993) Adjunct Professor of Physiology and Pharmacology
BS, Iowa; PhD, Louisiana

Lynne E. Wagenknecht (1994) Professor of Public Health Sciences
BS, Lenoir-Rhyne; MPH, DPH, Alabama (Birmingham)

Janice D. Wagner (1993) Professor of Pathology (Comparative Medicine)
BA, Hiram; MS, Virginia; DVM, Ohio State; PhD, Wake Forest

William D. Wagner (1972) Professor of Pathology (Comparative Medicine)
BS, Geneva; MS, PhD, West Virginia

Stephen J. Walker (2001) Associate Professor of Physiology and Pharmacology
BS, MS, PhD, West Virginia

Jeanne M. Wallace (1990) Associate Professor of Pathology (Comparative Medicine)
BS, DVM, Kansas State

Mark T. Wallace (1994) Associate Professor of Neurobiology and Anatomy
BA, MA, PhD, Temple

Reidar Wallin (1994) Research Professor of Internal Medicine
BA, MS, Oslo (Norway); PhD, Tromso (Norway)

Neal H. Walls (2004) Associate Professor, Divinity School
BA, College of William and Mary; MA, University of Virginia; PhD, Johns Hopkins University
Eric K. Watts (1997)
Associate Professor of Communication
BA, MA, Cincinnati, PhD, Northwestern

Sarah L. Watts (1987)
Professor of History
BA, Oklahoma College of Liberal Arts; MA, PhD, Oklahoma

Mary Wayne-Thomas (1986)
Associate Professor of Theatre
BSA, Penn State; MFA, Ohio State

Peter D. Weigl (1968)
Professor of Biology
BA, Williams; PhD, Duke

Jeffrey Weiner (1999)
Associate Professor of Physiology and Pharmacology
BS, MS, PhD, University of Toronto

E. Parks Welch III (1991)
Director of Coy Carpenter Library
BS, UNC-Chapel Hill; MBA, Wake Forest;
MLS, UNC-Greensboro

Mark E. Welker (1987)
William Louis Poteat Professor of Chemistry
Professor of Biochemistry
Associate Professor of Cancer Biology
BS, UNC-Chapel Hill; PhD, Florida State

Byron R. Wells (1981)
Professor of Romance Languages
BA, MA, Georgia; PhD, Columbia

G. Page West III (1997)
Benson-Pruitt Associate Professor of Business
(Wayne Calloway School of Business and Accountancy)
BA, Hamilton College;
MBA, Dartmouth; PhD, Colorado

Adjunct Associate Professor of Anthropology
Director, Museum of Anthropology
AB, University of Chicago;
MA, PhD, Pennsylvania State University

Ulrike Wiethaus (1991)
Professor of Humanities
Colloquium, Kirchliche Hochschule (Berlin, Germany);
MA, PhD, Temple

Jack E. Wilkerson Jr. (1989)
Professor of Accountancy
(Wayne Calloway School of Business and Accountancy)
BS, Bob Jones; PhD, Texas

John Wilkinson IV (2001)
Research Assistant Professor of Cancer Biology
BA, Simon’s Rock Early College;
PhD, Boston University School of Medicine

Alan J. Williams (1974)
Professor of History
BA, Stanford; MPhil, PhD, Yale

J. Koudy Williams (1987)
Professor of Pathology (Comparative Medicine)
Professor of Surgery (General)
BS, DVM, Iowa State

Richard T. Williams (1985)
Reynolds Professor of Physics
BS, Wake Forest; MA, PhD, Princeton

Jeff D. Williamson (2001)
Associate Professor of Internal Medicine (Gerontology)
Associate in Public Health Science (Epidemiology)
BS, Emory;
MD, Medical College of Georgia;
MHS, Johns Hopkins School of Hygiene and Public Health

Mark C. Willingham (1998)
Professor of Pathology
Associate in Cancer Biology
BS, College of Charleston;
MD, University of South Carolina

Z. Smith Reynolds Foundation Fellow
and Associate Professor of English
BA, Appalachian State; MA, Wake Forest;
PhD, City University of New York
George F. Wittenberg (2002)
AB, Harvard;
PhD, MD, University of California, San Diego
Assistant Professor of Neurology
Associate in Physiology and Pharmacology

Mark Wolfson (1999)
BA, Indiana; MA, PhD, Catholic
Associate Professor of Public Health Sciences (Social Science)
Associate Professor of Pediatrics

Yue-Ling Wong (2004)
PhD, University of Texas at Austin
Lecturer in Digital Media, Computer Science/Art

Frank B. Wood (1975)
BA, MA, Wake Forest;
MDiv, Southeastern Baptist Theological Seminary;
PhD, Duke
Professor of Neurology (Neuropsychology)
Associate in Diagnostic Radiology
Adjunct Professor of Psychology

Donald J. Woodward (1993)
BS, PhD, Michigan
Professor of Physiology and Pharmacology

Daniel J. Wozniak (1993)
BS, Michigan; PhD, Ohio State
Associate Professor of Microbiology and Immunology

Robert L. Wykle (1980)
BS, Western Carolina;
PhD, University of Tennessee
Research Professor of Biochemistry
Associate in Internal Medicine (Infectious Diseases)

Jianfeng Xu (2001)
MD, MS, Shanghai Medical University, China;
MPH, PhD, Johns Hopkins School of Hygiene and Public Health
Professor of Public Health Sciences (Epidemiology)
Professor in Cancer Biology

James J. Yoo (2004)
BA, University of Illinois (Urbana);
MS, PhD, Korea University Graduate School of Medicine, (Korea);
MD, Korea University College of Medicine (Seoul, Korea)
Associate Professor of Regenerative Medicine
Associate in Physiology and Pharmacology
of Surgical Sciences (Urology)

Barbara K. Yoza (1994)
AB, Chemistry; PhD, SUNY (Stony Brook)
Research Assistant Professor of Internal Medicine
(Infectious Diseases)

Liqing Yu (2004)
MD, Southwestern Hospital (PR China)
Assistant Professor of Pathology

Clifford Zeyl (1997)
BSc, University of Guelph;
MSc, PhD, McGill
Z. Smith Reynolds Foundation Fellow
and Associate Professor of Biology

Jian-Ming Zhu (2002)
BSc, Zhejiang University (China);
MSc, Chinese Academy of Sciences;
MSc, University of Saskatchewan (Canada);
PhD, University of Manitoba (Canada)
Assistant Professor of Radiation Oncology
Associate in Biomedical Engineering
Associate in Regenerative Medicine

MD, Nanjing Medical University (China)
Assistant Professor of Physiology and Pharmacology

Margaret D. Zulick (1997)
BM, Westminster Choir College;
MA, Earlham School of Religion;
MTS, Garret-Evangelical Theo. Seminary; PhD, Northwestern
Associate Professor of Communication
Index

A

academic calendar
Bowman Gray 2
Reynolda 3
accountancy course listings 42
accreditation 14
admission 20
categories 22
eligibility 20
students with disabilities 21
admission to candidacy 31
admission to degree candidacy
counseling program 33
doctor of philosophy degree 36
master of arts degree 32
master of science 35
administration 18, 155
Akkadian 133
anatomy 110
anthropology 136
application
dates 19
how to apply 19
Aramaic 134
ARAMARK 24
art 139
assistantships 19
auditing a course 29
auto registration 27

B

biochemistry and molecular biology 45
biology 48
biomedical engineering 55
biomedical sciences, minor program 31
Board of Trustees 152
Board of Visitors 153
Bowman Gray Campus
computing 12
general studies courses 135
ID cards 27
immunization policy 24
library 10
parking 27
Student Health Service 24

C

CACREP 33
cancer biology 59
career services 27
chemistry 60
classical languages 139
classification, student 22
communication 65
Community Counseling Program 33, 74
comparative medicine 69
computer science 70
computing 12
confidentiality (medical) 26
Council on Accreditation of Counseling and
Related Educational Programs 33
counseling 74
community counseling program 33, 74
Master of Arts Degree 32
School Counseling Program 32, 74
counseling center 27
courses in general studies
Bowman Gray campus 135
Reynolda campus 136
courses of instruction 42
course requirements
doctor of philosophy degree 36
master of arts degree 32
master of science degree 34
master of science in accountancy 35
Coy C. Carpenter Library 10

D

Deacon OneCard 24
degrees offered 31
degree candidacy
master of science in accountancy 35
dining 24
dissertation, fees 23
doctor of philosophy degree 36
admission to degree candidacy 36
course requirements 36
dissertation 36
final examination 37
fail 37
 pass upon rectifying deficiencies 37
 unconditional pass 37
foreign language or special skills req 36
preliminary exam 36
residence requirement 36
dropping a course 29

E
education 78
eligibility for admission 20
Employee Health Services 25
English 82
ethics in science requirement 35

F
faculty 160
fees 22
fellowships 19
final examination
 doctor of philosophy degree 37
 master of arts degree 32
 master of science degree 35
financial assistance 19
food services 24
foreign language or special skills requirement. 31
 doctor of philosophy degree 36
 master of arts degree 32
 master of science degree 34
French 147
full-time status 22

G
gender studies 151
general studies courses
 Bowman Gray Campus 135
 Reynolda Campus 136
genetics 106
George C. Mackie Health Center 25
German measles 25, 26
GMAT 21
grade requirements 28
grading 28
Graduate Council 154
graduate faculty listings 160
Graduate Faculty Representatives
to the University Senate 154
Graduate Management Admission Test. 21
Graduate Record Examinations. 20
Graduate School
general information 16
 graduation fees 23
GRE 20

H
health and exercise science 89
health assessment questionnaire 24
Health Information Summary Form 25
health insurance 24, 25
health sciences research 92
Hebrew 133
Hepatitis B 25, 27
history 139
history, University 9
housing services 23
humanities 144

I
ID cards 27
IELTS 21
immunology 102
inclement weather, health services policy 26
incomplete, grade of 28
information technology 12
Instructions for the Preparation
of Theses and Dissertations 31
Interdisciplinary Graduate Track in Structural
and Computational Biophysics 94
International English Lang Testing System. 21
inventions 30
leave of absence 29
letter from the dean 4
liberal studies 33, 97
libraries 10

MALS 33, 97
master of arts degree
admission to degree candidacy 32
course requirements 31
final examination 32
foreign language or special skills req 32
residence requirements 31
thesis requirement 32
master of arts degree in counseling 32
admission to candidacy 33
community counseling 33
school counseling 32
master of arts in education degree 33
master of arts in liberal studies degree 33
master of science
admission to degree candidacy 35
course requirements 34
final examination 35
foreign language or special skills req 34
requirements for 34
residence requirements 34
thesis requirement 34
master of science in accountancy 35
course requirements 35
degree candidacy 35
residence requirement 35
mathematics 98
MD/PHD degree program 38
measles 26
medical records, retention of 26
microbiology and immunology 102
minimum grade requirements. 28
minor program in biomedical sciences 31
molecular and cellular pathobiology 104
molecular biology 45
molecular genetics 106
molecular medicine 108
mumps 25, 26

National Certified Counselor examination 33
Near Eastern languages and literature 133
neurobiology and anatomy 110
neuroscience 115
non-degree status 22
NR, grade of 28

Oak Ridge Associated Universities 14
online application 15

part-time status 22
patents policy 30
pathobiology 104
pharmacology 122
PhD/MBA degree program 40
philosophy 36, 145
physics 118
physiology and pharmacology 122
polio 26
political science 146
privileges, student 23
procedures 19
Professional Center Library, 11
programs of study 5
provisional status in a degree program 22
psychology 125

recognition 14
refunds 23
regular status in a degree program 22
religion 129
repeating a course 28
requirements for degrees 31
research assistantship 19
residence life and housing 23
employment opportunities 20
residence requirement
doctor of philosophy degree 36
master of arts degree 31
master of science degree 34
master of science in accountancy degree 35
Reynolda Campus
 computing 12
 general studies courses 136
 ID cards 27
 immunization policy 26
 library 11
 Student Health Service 25
Romance languages 147
rubella 25, 26
rubeola 25, 26

S
 scholarships 20
 School Counseling Program 32, 74
 sociology 151
 Spanish 148
 Statement of Principle on Diversity 18
 Statement of Purpose 16
 Statement on Student Rights
 and Responsibilities 30
 students with disabilities 21
 student classification 22
 student health service 24, 25
 student privileges 23
 summer session 22

T
 Test of English as a Foreign Language 21
 tetanus and diphtheria 24, 26
 thesis requirement
 master of arts degree 32
 master of science degree 34
 TOEFL 21
 transferring to a different program 29
 transfer students 21
 tuberculin skin test 25, 26
 tuition 22
 tuition, concession plan 23
 tuition, refunds 23

U
 unclassified status 22
 university, general information 9
 University Counseling Center 27
 University identification cards 27
 University Technology Transfer Service 30

V
 varicella 25, 27
 vehicle registration 27

W
 Wayne Calloway School of Business
 and Accountancy 10, 35, 42
 withdrawal 30
 women’s and gender studies 151

Z
 Z. Smith Reynolds Library 11
Wake Forest University Graduate School of Arts and Sciences Administrative Offices

Bowman Gray Campus

Dean of the Graduate School
Biomedical Sciences
Medical Center Boulevard
Winston-Salem, NC 27157-1001

Telephone: (336) 716-4303 or (800) GET-GRAD
FAX: (336) 716-0185
E-mail: bggrad@wfubmc.edu

Reynolda Campus

Dean of the Graduate School
Wake Forest University
1834 Wake Forest Road
Room 5, Reynolda Hall, PO Box 7487
Winston-Salem, NC 27109-7487

Telephone: (336) 758-5301 or (800) 257-3166
FAX: (336) 758-4230
E-mail: gradschl@wfu.edu